Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319961195> ?p ?o ?g. }
- W4319961195 endingPage "757" @default.
- W4319961195 startingPage "757" @default.
- W4319961195 abstract "Generations of sensors have been developed for predicting food sensory profiles to circumvent the use of a human sensory panel, but a technology that can rapidly predict a suite of sensory attributes from one spectral measurement remains unavailable. Using spectra from grape extracts, this novel study aimed to address this challenge by exploring the use of a machine learning algorithm, extreme gradient boosting (XGBoost), to predict twenty-two wine sensory attribute scores from five sensory stimuli: aroma, colour, taste, flavour, and mouthfeel. Two datasets were obtained from absorbance-transmission and fluorescence excitation-emission matrix (A-TEEM) spectroscopy with different fusion methods: variable-level data fusion of absorbance and fluorescence spectral fingerprints, and feature-level data fusion of A-TEEM and CIELAB datasets. The results for externally validated models showed slightly better performance using only A-TEEM data, predicting five out of twenty-two wine sensory attributes with R2 values above 0.7 and fifteen with R2 values above 0.5. Considering the complex biotransformation involved in processing grapes to wine, the ability to predict sensory properties based on underlying chemical composition in this way suggests that the approach could be more broadly applicable to the agri-food sector and other transformed foodstuffs to predict a product’s sensory characteristics from raw material spectral attributes." @default.
- W4319961195 created "2023-02-11" @default.
- W4319961195 creator A5049203892 @default.
- W4319961195 creator A5049330844 @default.
- W4319961195 creator A5071940174 @default.
- W4319961195 creator A5073717399 @default.
- W4319961195 creator A5074669530 @default.
- W4319961195 date "2023-02-09" @default.
- W4319961195 modified "2023-10-14" @default.
- W4319961195 title "Use of Machine Learning with Fused Spectral Data for Prediction of Product Sensory Characteristics: The Case of Grape to Wine" @default.
- W4319961195 cites W1927833559 @default.
- W4319961195 cites W1970458547 @default.
- W4319961195 cites W1985945238 @default.
- W4319961195 cites W1992043664 @default.
- W4319961195 cites W1993166110 @default.
- W4319961195 cites W1997207432 @default.
- W4319961195 cites W1997241364 @default.
- W4319961195 cites W2023545695 @default.
- W4319961195 cites W2054334579 @default.
- W4319961195 cites W2054401185 @default.
- W4319961195 cites W2058037240 @default.
- W4319961195 cites W2170802631 @default.
- W4319961195 cites W2213016751 @default.
- W4319961195 cites W2412986339 @default.
- W4319961195 cites W2436973322 @default.
- W4319961195 cites W2493350384 @default.
- W4319961195 cites W2495615558 @default.
- W4319961195 cites W2601038065 @default.
- W4319961195 cites W2771976978 @default.
- W4319961195 cites W2783884634 @default.
- W4319961195 cites W2789783013 @default.
- W4319961195 cites W2949537065 @default.
- W4319961195 cites W3002195067 @default.
- W4319961195 cites W3004273616 @default.
- W4319961195 cites W3038064885 @default.
- W4319961195 cites W3043168814 @default.
- W4319961195 cites W3102476541 @default.
- W4319961195 cites W3110364903 @default.
- W4319961195 cites W3162648572 @default.
- W4319961195 cites W3184893629 @default.
- W4319961195 cites W3207381897 @default.
- W4319961195 cites W3214674578 @default.
- W4319961195 cites W4220728764 @default.
- W4319961195 cites W4225001058 @default.
- W4319961195 cites W4225109832 @default.
- W4319961195 cites W4226017353 @default.
- W4319961195 cites W4231416853 @default.
- W4319961195 cites W4297902650 @default.
- W4319961195 doi "https://doi.org/10.3390/foods12040757" @default.
- W4319961195 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36832832" @default.
- W4319961195 hasPublicationYear "2023" @default.
- W4319961195 type Work @default.
- W4319961195 citedByCount "1" @default.
- W4319961195 countsByYear W43199611952023 @default.
- W4319961195 crossrefType "journal-article" @default.
- W4319961195 hasAuthorship W4319961195A5049203892 @default.
- W4319961195 hasAuthorship W4319961195A5049330844 @default.
- W4319961195 hasAuthorship W4319961195A5071940174 @default.
- W4319961195 hasAuthorship W4319961195A5073717399 @default.
- W4319961195 hasAuthorship W4319961195A5074669530 @default.
- W4319961195 hasBestOaLocation W43199611951 @default.
- W4319961195 hasConcept C119857082 @default.
- W4319961195 hasConcept C153180895 @default.
- W4319961195 hasConcept C154945302 @default.
- W4319961195 hasConcept C16281581 @default.
- W4319961195 hasConcept C169760540 @default.
- W4319961195 hasConcept C178790620 @default.
- W4319961195 hasConcept C185592680 @default.
- W4319961195 hasConcept C186060115 @default.
- W4319961195 hasConcept C200215109 @default.
- W4319961195 hasConcept C206139338 @default.
- W4319961195 hasConcept C24223341 @default.
- W4319961195 hasConcept C31903555 @default.
- W4319961195 hasConcept C33923547 @default.
- W4319961195 hasConcept C33954974 @default.
- W4319961195 hasConcept C41008148 @default.
- W4319961195 hasConcept C55952523 @default.
- W4319961195 hasConcept C86803240 @default.
- W4319961195 hasConcept C94487597 @default.
- W4319961195 hasConceptScore W4319961195C119857082 @default.
- W4319961195 hasConceptScore W4319961195C153180895 @default.
- W4319961195 hasConceptScore W4319961195C154945302 @default.
- W4319961195 hasConceptScore W4319961195C16281581 @default.
- W4319961195 hasConceptScore W4319961195C169760540 @default.
- W4319961195 hasConceptScore W4319961195C178790620 @default.
- W4319961195 hasConceptScore W4319961195C185592680 @default.
- W4319961195 hasConceptScore W4319961195C186060115 @default.
- W4319961195 hasConceptScore W4319961195C200215109 @default.
- W4319961195 hasConceptScore W4319961195C206139338 @default.
- W4319961195 hasConceptScore W4319961195C24223341 @default.
- W4319961195 hasConceptScore W4319961195C31903555 @default.
- W4319961195 hasConceptScore W4319961195C33923547 @default.
- W4319961195 hasConceptScore W4319961195C33954974 @default.
- W4319961195 hasConceptScore W4319961195C41008148 @default.
- W4319961195 hasConceptScore W4319961195C55952523 @default.
- W4319961195 hasConceptScore W4319961195C86803240 @default.
- W4319961195 hasConceptScore W4319961195C94487597 @default.
- W4319961195 hasFunder F4320334704 @default.