Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319968611> ?p ?o ?g. }
- W4319968611 endingPage "955" @default.
- W4319968611 startingPage "955" @default.
- W4319968611 abstract "For crop growth monitoring and agricultural management, it is important to use hyperspectral remote sensing techniques to estimate canopy nitrogen content in a timely and accurate manner. The traditional nadir method has limited ability to assess the nitrogen trophic state of cotton shoots, which is not conducive to high-precision nitrogen inversion, whereas the multi-angle remote sensing monitoring method can effectively extract the canopy’s physicochemical information. However, multi-angle spectral information is affected by a variety of factors, which frequently causes shifts in the band associated with nitrogen uptake, and lowers the estimation accuracy. The capacity of the spectral index to estimate aerial nitrogen concentration (ANC) in cotton was therefore investigated in this work under various observation zenith angles (VZAs), and the Relief−F method was employed to select the best spectral band with weight for ANC that is insensitive to VZA. Therefore, in this study, the ability of the spectral index to estimate ANC in cotton was explored under different VZAs, and the Relief-F algorithm was used to optimize the optimal spectral band with weight for ANC that is insensitive to VZA. The angle insensitive nitrogen index (AINI) for various VZAs was calculated using the expression (R530 − R704)/(R1412 + R704). The results show that the correlation between the spectral index and the ANC chosen in this study is stronger than the correlation between off-nadir observations, and the correlation coefficients between Photochemical Reflectance Index (PRI), AINI, and ANC are highest when VZA is −20° and −50° (r = 0.866 and 0.893, respectively). Compared with the traditional vegetation index, AINI had the best correlation with ANC under different VZAs (r > 0.84), and the performance of ANC in the backscatter direction was estimated to be better than that in the forward-scatter direction. At the same time, the ANC estimation model of the optimal indices AINI and PRI was combined with the machine learning method to achieve better accuracy, and the prediction accuracy of the random forest (RF) model was R2 = 0.98 and RMSE = 0.590. This study shows that the AINI index can estimate cotton ANC under different VZAs. Simultaneously, the backscattered direction is revealed to be more conducive to cotton ANC estimation. The findings encourage the use of multi-angle observations in crop nutrient estimation, which will also help to improve the use of ground-based and satellite sensors." @default.
- W4319968611 created "2023-02-11" @default.
- W4319968611 creator A5014934585 @default.
- W4319968611 creator A5015212778 @default.
- W4319968611 creator A5023269918 @default.
- W4319968611 creator A5029484872 @default.
- W4319968611 creator A5044496081 @default.
- W4319968611 creator A5085632500 @default.
- W4319968611 creator A5087118362 @default.
- W4319968611 creator A5087128685 @default.
- W4319968611 creator A5091391476 @default.
- W4319968611 date "2023-02-09" @default.
- W4319968611 modified "2023-09-25" @default.
- W4319968611 title "Estimation of Cotton Nitrogen Content Based on Multi-Angle Hyperspectral Data and Machine Learning Models" @default.
- W4319968611 cites W1964217023 @default.
- W4319968611 cites W1971070487 @default.
- W4319968611 cites W1978223575 @default.
- W4319968611 cites W1980298608 @default.
- W4319968611 cites W1991929991 @default.
- W4319968611 cites W2000613913 @default.
- W4319968611 cites W2004430076 @default.
- W4319968611 cites W2007037136 @default.
- W4319968611 cites W2007650489 @default.
- W4319968611 cites W2012686349 @default.
- W4319968611 cites W2016239143 @default.
- W4319968611 cites W2018027183 @default.
- W4319968611 cites W2018798426 @default.
- W4319968611 cites W2019248281 @default.
- W4319968611 cites W2022446359 @default.
- W4319968611 cites W2022631288 @default.
- W4319968611 cites W2025757188 @default.
- W4319968611 cites W2030233869 @default.
- W4319968611 cites W2036003376 @default.
- W4319968611 cites W2036259807 @default.
- W4319968611 cites W2046450726 @default.
- W4319968611 cites W2068950233 @default.
- W4319968611 cites W2079842406 @default.
- W4319968611 cites W2089441588 @default.
- W4319968611 cites W2109006150 @default.
- W4319968611 cites W2111947859 @default.
- W4319968611 cites W2129804846 @default.
- W4319968611 cites W2133506218 @default.
- W4319968611 cites W2139915136 @default.
- W4319968611 cites W2145058632 @default.
- W4319968611 cites W2147661828 @default.
- W4319968611 cites W2163410149 @default.
- W4319968611 cites W2176972851 @default.
- W4319968611 cites W2202464059 @default.
- W4319968611 cites W2306416935 @default.
- W4319968611 cites W2546473923 @default.
- W4319968611 cites W2611532897 @default.
- W4319968611 cites W2738290212 @default.
- W4319968611 cites W2773205809 @default.
- W4319968611 cites W2801669777 @default.
- W4319968611 cites W2896845224 @default.
- W4319968611 cites W2953990835 @default.
- W4319968611 cites W2993884728 @default.
- W4319968611 cites W3088588527 @default.
- W4319968611 cites W3162408390 @default.
- W4319968611 cites W4283215110 @default.
- W4319968611 cites W4292792063 @default.
- W4319968611 cites W4306964465 @default.
- W4319968611 cites W4308284193 @default.
- W4319968611 cites W4308971964 @default.
- W4319968611 doi "https://doi.org/10.3390/rs15040955" @default.
- W4319968611 hasPublicationYear "2023" @default.
- W4319968611 type Work @default.
- W4319968611 citedByCount "1" @default.
- W4319968611 countsByYear W43199686112023 @default.
- W4319968611 crossrefType "journal-article" @default.
- W4319968611 hasAuthorship W4319968611A5014934585 @default.
- W4319968611 hasAuthorship W4319968611A5015212778 @default.
- W4319968611 hasAuthorship W4319968611A5023269918 @default.
- W4319968611 hasAuthorship W4319968611A5029484872 @default.
- W4319968611 hasAuthorship W4319968611A5044496081 @default.
- W4319968611 hasAuthorship W4319968611A5085632500 @default.
- W4319968611 hasAuthorship W4319968611A5087118362 @default.
- W4319968611 hasAuthorship W4319968611A5087128685 @default.
- W4319968611 hasAuthorship W4319968611A5091391476 @default.
- W4319968611 hasBestOaLocation W43199686111 @default.
- W4319968611 hasConcept C101000010 @default.
- W4319968611 hasConcept C118518473 @default.
- W4319968611 hasConcept C120217122 @default.
- W4319968611 hasConcept C121332964 @default.
- W4319968611 hasConcept C127313418 @default.
- W4319968611 hasConcept C1276947 @default.
- W4319968611 hasConcept C159078339 @default.
- W4319968611 hasConcept C166957645 @default.
- W4319968611 hasConcept C178790620 @default.
- W4319968611 hasConcept C185592680 @default.
- W4319968611 hasConcept C19269812 @default.
- W4319968611 hasConcept C205649164 @default.
- W4319968611 hasConcept C25989453 @default.
- W4319968611 hasConcept C33923547 @default.
- W4319968611 hasConcept C39432304 @default.
- W4319968611 hasConcept C537208039 @default.
- W4319968611 hasConcept C53970728 @default.
- W4319968611 hasConcept C59822182 @default.