Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319978412> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4319978412 abstract "Cluster analysis as a new branch of statistics is receiving more and more attention. The number of studies using cluster analysis is also increasing, and its application in power systems is becoming more and more valuable. One of the examples is the clustering analysis of customer load curves. The clustering analysis of customer load curves can yield two important pieces of information: one is to obtain typical load distribution: the second is to become important data for classifying customers by load characteristics. This method has theoretical and practical significance for demand response, load forecasting, load control, electricity consumption anomaly detection and even tariff cataloging and developing marketing strategies. At present, there are many researches on cluster analysis and clustering methods of load curve, but each has its own advantages and disadvantages. In this paper, the advantages and disadvantages of traditional k-means algorithm, Gaussian fuzzy algorithm, SOM algorithm and GWO-FCM algorithm are deeply analyzed, and and combining the clustering stability and clustering effect of different algorithms. A voting integrated clustering algorithm is proposed, which realizes the dimensionality reduction of high-dimensional data by integrated tree fitting, uses the Marxian distance to overcome the correlation of clustering index dimensions, and then determines the effective number of clusters; determines the baseline clustering algorithm by DB criterion, and finally unifies the integrated clustering results by the consistency function matrix. Finally, the effectiveness of the proposed voting integration algorithm for clustering results is verified by comparing the actual arithmetic data based on a residential demand response experiment in a province in southeast China, which increases the effectiveness and superiority of the proposed algorithm for clustering residential demand response user data by 31% on average." @default.
- W4319978412 created "2023-02-11" @default.
- W4319978412 creator A5032599820 @default.
- W4319978412 creator A5035705527 @default.
- W4319978412 creator A5038863382 @default.
- W4319978412 creator A5073251970 @default.
- W4319978412 creator A5084854649 @default.
- W4319978412 creator A5088528643 @default.
- W4319978412 date "2022-11-04" @default.
- W4319978412 modified "2023-09-27" @default.
- W4319978412 title "Accurate and fast clustering of residential customer load curves based on bid-vote integration algorithm" @default.
- W4319978412 cites W2036877005 @default.
- W4319978412 cites W2321807518 @default.
- W4319978412 cites W2328146686 @default.
- W4319978412 cites W3000553184 @default.
- W4319978412 doi "https://doi.org/10.1109/ifeea57288.2022.10038189" @default.
- W4319978412 hasPublicationYear "2022" @default.
- W4319978412 type Work @default.
- W4319978412 citedByCount "0" @default.
- W4319978412 crossrefType "proceedings-article" @default.
- W4319978412 hasAuthorship W4319978412A5032599820 @default.
- W4319978412 hasAuthorship W4319978412A5035705527 @default.
- W4319978412 hasAuthorship W4319978412A5038863382 @default.
- W4319978412 hasAuthorship W4319978412A5073251970 @default.
- W4319978412 hasAuthorship W4319978412A5084854649 @default.
- W4319978412 hasAuthorship W4319978412A5088528643 @default.
- W4319978412 hasConcept C104047586 @default.
- W4319978412 hasConcept C112972136 @default.
- W4319978412 hasConcept C11413529 @default.
- W4319978412 hasConcept C119857082 @default.
- W4319978412 hasConcept C124101348 @default.
- W4319978412 hasConcept C17212007 @default.
- W4319978412 hasConcept C193143536 @default.
- W4319978412 hasConcept C33704608 @default.
- W4319978412 hasConcept C41008148 @default.
- W4319978412 hasConcept C73555534 @default.
- W4319978412 hasConcept C94641424 @default.
- W4319978412 hasConceptScore W4319978412C104047586 @default.
- W4319978412 hasConceptScore W4319978412C112972136 @default.
- W4319978412 hasConceptScore W4319978412C11413529 @default.
- W4319978412 hasConceptScore W4319978412C119857082 @default.
- W4319978412 hasConceptScore W4319978412C124101348 @default.
- W4319978412 hasConceptScore W4319978412C17212007 @default.
- W4319978412 hasConceptScore W4319978412C193143536 @default.
- W4319978412 hasConceptScore W4319978412C33704608 @default.
- W4319978412 hasConceptScore W4319978412C41008148 @default.
- W4319978412 hasConceptScore W4319978412C73555534 @default.
- W4319978412 hasConceptScore W4319978412C94641424 @default.
- W4319978412 hasFunder F4320335967 @default.
- W4319978412 hasLocation W43199784121 @default.
- W4319978412 hasOpenAccess W4319978412 @default.
- W4319978412 hasPrimaryLocation W43199784121 @default.
- W4319978412 hasRelatedWork W2036503911 @default.
- W4319978412 hasRelatedWork W2143402976 @default.
- W4319978412 hasRelatedWork W2165695836 @default.
- W4319978412 hasRelatedWork W2357149509 @default.
- W4319978412 hasRelatedWork W2389934482 @default.
- W4319978412 hasRelatedWork W2782648987 @default.
- W4319978412 hasRelatedWork W2970954390 @default.
- W4319978412 hasRelatedWork W3168768270 @default.
- W4319978412 hasRelatedWork W37188521 @default.
- W4319978412 hasRelatedWork W2185743328 @default.
- W4319978412 isParatext "false" @default.
- W4319978412 isRetracted "false" @default.
- W4319978412 workType "article" @default.