Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319981444> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4319981444 abstract "The possibilities of using artificial neural networks in the tasks of recognizing the microstructure of cast irons have been investigated. Convolutional neural networks work on the basis of filters that are concerned with recognizing certain characteristics of an image (for example, straight lines). A filter is a collection of kernels; sometimes a single kernel is used in a filter. A kernel is a common matrix of numbers called weights that are trained in order to search for certain characteristics in images. The filter moves along the image and determines if some desired characteristic is present in a particular part of it. To obtain an answer of this kind, a convolution operation is performed, which is the sum of the products of the filter elements and the matrix of input signals. If some desired characteristic is present in the image fragment, the convolution operation will produce a number with a relatively large value at the output. If the characteristic is absent, the output number will be small. Note that the number of filter channels must match the number of channels in the original image; only then will the convolution operation produce the desired effect. For example, if the original image consists of three channels, the filter must also have three channels. The structure (architecture) of the convolutional neural network was proposed and its ability to recognize the presence of structural components of the microstructure of cast iron was confirmed. The training of the network was performed on images of microslices of various types of cast iron, and positive results were achieved with an accuracy close to 85%. The results of the work indicate the prospects of using convolutional neural networks in the tasks of recognizing and classifying the microstructure of cast iron." @default.
- W4319981444 created "2023-02-11" @default.
- W4319981444 creator A5074489687 @default.
- W4319981444 date "2022-01-01" @default.
- W4319981444 modified "2023-10-07" @default.
- W4319981444 title "The application of deep neural networks for the classification of the microstructure of cast iron products" @default.
- W4319981444 doi "https://doi.org/10.31673/2518-7678.2021.026366" @default.
- W4319981444 hasPublicationYear "2022" @default.
- W4319981444 type Work @default.
- W4319981444 citedByCount "0" @default.
- W4319981444 crossrefType "journal-article" @default.
- W4319981444 hasAuthorship W4319981444A5074489687 @default.
- W4319981444 hasBestOaLocation W43199814441 @default.
- W4319981444 hasConcept C106131492 @default.
- W4319981444 hasConcept C106487976 @default.
- W4319981444 hasConcept C11413529 @default.
- W4319981444 hasConcept C115961682 @default.
- W4319981444 hasConcept C118615104 @default.
- W4319981444 hasConcept C153180895 @default.
- W4319981444 hasConcept C154945302 @default.
- W4319981444 hasConcept C159985019 @default.
- W4319981444 hasConcept C192562407 @default.
- W4319981444 hasConcept C31972630 @default.
- W4319981444 hasConcept C33923547 @default.
- W4319981444 hasConcept C41008148 @default.
- W4319981444 hasConcept C45347329 @default.
- W4319981444 hasConcept C50644808 @default.
- W4319981444 hasConcept C74193536 @default.
- W4319981444 hasConcept C81363708 @default.
- W4319981444 hasConceptScore W4319981444C106131492 @default.
- W4319981444 hasConceptScore W4319981444C106487976 @default.
- W4319981444 hasConceptScore W4319981444C11413529 @default.
- W4319981444 hasConceptScore W4319981444C115961682 @default.
- W4319981444 hasConceptScore W4319981444C118615104 @default.
- W4319981444 hasConceptScore W4319981444C153180895 @default.
- W4319981444 hasConceptScore W4319981444C154945302 @default.
- W4319981444 hasConceptScore W4319981444C159985019 @default.
- W4319981444 hasConceptScore W4319981444C192562407 @default.
- W4319981444 hasConceptScore W4319981444C31972630 @default.
- W4319981444 hasConceptScore W4319981444C33923547 @default.
- W4319981444 hasConceptScore W4319981444C41008148 @default.
- W4319981444 hasConceptScore W4319981444C45347329 @default.
- W4319981444 hasConceptScore W4319981444C50644808 @default.
- W4319981444 hasConceptScore W4319981444C74193536 @default.
- W4319981444 hasConceptScore W4319981444C81363708 @default.
- W4319981444 hasIssue "1" @default.
- W4319981444 hasLocation W43199814441 @default.
- W4319981444 hasOpenAccess W4319981444 @default.
- W4319981444 hasPrimaryLocation W43199814441 @default.
- W4319981444 hasRelatedWork W2175746458 @default.
- W4319981444 hasRelatedWork W2406522397 @default.
- W4319981444 hasRelatedWork W2613736958 @default.
- W4319981444 hasRelatedWork W2810384904 @default.
- W4319981444 hasRelatedWork W2949189996 @default.
- W4319981444 hasRelatedWork W3006085271 @default.
- W4319981444 hasRelatedWork W3093612317 @default.
- W4319981444 hasRelatedWork W3159557112 @default.
- W4319981444 hasRelatedWork W3200060857 @default.
- W4319981444 hasRelatedWork W4312417841 @default.
- W4319981444 hasVolume "2" @default.
- W4319981444 isParatext "false" @default.
- W4319981444 isRetracted "false" @default.
- W4319981444 workType "article" @default.