Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319985183> ?p ?o ?g. }
- W4319985183 abstract "Modern UAS (Unmanned Aerial Vehicles) or just drones have emerged with the primary goal of producing maps and imagery with extremely high spatial resolution. The refined information provides a good opportunity to quantify the distribution of vegetation across heterogeneous landscapes, revealing an important strategy for biodiversity conservation. We investigate whether computer vision and machine learning techniques (Object-Based Image Analysis—OBIA method, associated with Random Forest classifier) are effective to classify heterogeneous vegetation arising from ultrahigh-resolution data generated by UAS images. We focus our fieldwork in a highly diverse, seasonally dry, complex mountaintop vegetation system, the campo rupestre or rupestrian grassland, located at Serra do Cipó, Espinhaço Range, Southeastern Brazil. According to our results, all classifications received general accuracy above 0.95, indicating that the methodological approach enabled the identification of subtle variations in species composition, the capture of detailed vegetation and landscape features, and the recognition of vegetation types’ phenophases. Therefore, our study demonstrated that the machine learning approach and combination between OBIA method and Random Forest classifier, generated extremely high accuracy classification, reducing the misclassified pixels, and providing valuable data for the classification of complex vegetation systems such as the campo rupestre mountaintop grassland." @default.
- W4319985183 created "2023-02-11" @default.
- W4319985183 creator A5055466136 @default.
- W4319985183 creator A5069511431 @default.
- W4319985183 creator A5090166826 @default.
- W4319985183 date "2023-02-10" @default.
- W4319985183 modified "2023-10-14" @default.
- W4319985183 title "Spatial distribution and temporal variation of tropical mountaintop vegetation through images obtained by drones" @default.
- W4319985183 cites W1582431393 @default.
- W4319985183 cites W1701988833 @default.
- W4319985183 cites W1964311108 @default.
- W4319985183 cites W1965500690 @default.
- W4319985183 cites W1984792953 @default.
- W4319985183 cites W1998943389 @default.
- W4319985183 cites W2002576912 @default.
- W4319985183 cites W2019400639 @default.
- W4319985183 cites W2027254180 @default.
- W4319985183 cites W2033673217 @default.
- W4319985183 cites W2044504174 @default.
- W4319985183 cites W2062576694 @default.
- W4319985183 cites W2068633392 @default.
- W4319985183 cites W2089212648 @default.
- W4319985183 cites W2120225005 @default.
- W4319985183 cites W2132424470 @default.
- W4319985183 cites W2138144622 @default.
- W4319985183 cites W2138973222 @default.
- W4319985183 cites W2150664932 @default.
- W4319985183 cites W2168809519 @default.
- W4319985183 cites W2170340597 @default.
- W4319985183 cites W2224718689 @default.
- W4319985183 cites W2233094088 @default.
- W4319985183 cites W2305395239 @default.
- W4319985183 cites W2339342149 @default.
- W4319985183 cites W2504324120 @default.
- W4319985183 cites W2530530432 @default.
- W4319985183 cites W2591919925 @default.
- W4319985183 cites W2603798200 @default.
- W4319985183 cites W2604930418 @default.
- W4319985183 cites W2606562860 @default.
- W4319985183 cites W2610728744 @default.
- W4319985183 cites W2648242067 @default.
- W4319985183 cites W2736644580 @default.
- W4319985183 cites W2765366036 @default.
- W4319985183 cites W2767193133 @default.
- W4319985183 cites W2770243941 @default.
- W4319985183 cites W2771475405 @default.
- W4319985183 cites W2772851123 @default.
- W4319985183 cites W2773774210 @default.
- W4319985183 cites W2782264647 @default.
- W4319985183 cites W2793927960 @default.
- W4319985183 cites W2801193171 @default.
- W4319985183 cites W2806948630 @default.
- W4319985183 cites W2810500771 @default.
- W4319985183 cites W2884276823 @default.
- W4319985183 cites W2902505403 @default.
- W4319985183 cites W2902668251 @default.
- W4319985183 cites W2906128662 @default.
- W4319985183 cites W2907396431 @default.
- W4319985183 cites W2908895250 @default.
- W4319985183 cites W2911964244 @default.
- W4319985183 cites W2913423314 @default.
- W4319985183 cites W2914709307 @default.
- W4319985183 cites W2918978557 @default.
- W4319985183 cites W2938198159 @default.
- W4319985183 cites W2944185398 @default.
- W4319985183 cites W2950604226 @default.
- W4319985183 cites W2955077228 @default.
- W4319985183 cites W2958959521 @default.
- W4319985183 cites W2963268125 @default.
- W4319985183 cites W2963679327 @default.
- W4319985183 cites W2968414429 @default.
- W4319985183 cites W2977371486 @default.
- W4319985183 cites W2980307044 @default.
- W4319985183 cites W2984019541 @default.
- W4319985183 cites W2984953856 @default.
- W4319985183 cites W3000457862 @default.
- W4319985183 cites W3010319118 @default.
- W4319985183 cites W3011846806 @default.
- W4319985183 cites W3012482138 @default.
- W4319985183 cites W3025652605 @default.
- W4319985183 cites W3046473480 @default.
- W4319985183 cites W3109043634 @default.
- W4319985183 cites W3132104078 @default.
- W4319985183 cites W3135028703 @default.
- W4319985183 cites W3174961191 @default.
- W4319985183 cites W3184704320 @default.
- W4319985183 cites W3194613964 @default.
- W4319985183 cites W3200827251 @default.
- W4319985183 cites W4213444297 @default.
- W4319985183 cites W4224983923 @default.
- W4319985183 cites W4289793720 @default.
- W4319985183 doi "https://doi.org/10.3389/fenvs.2023.1083328" @default.
- W4319985183 hasPublicationYear "2023" @default.
- W4319985183 type Work @default.
- W4319985183 citedByCount "0" @default.
- W4319985183 crossrefType "journal-article" @default.
- W4319985183 hasAuthorship W4319985183A5055466136 @default.
- W4319985183 hasAuthorship W4319985183A5069511431 @default.
- W4319985183 hasAuthorship W4319985183A5090166826 @default.
- W4319985183 hasBestOaLocation W43199851831 @default.