Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319989303> ?p ?o ?g. }
- W4319989303 endingPage "109041" @default.
- W4319989303 startingPage "109041" @default.
- W4319989303 abstract "Big data generated by environmental monitoring equipment create a good opportunity for improving performance evaluation results while also posing a challenge for DEA (Data Envelopment Analysis) model construction. This paper constructs four DEA models to deal with streaming data combined with traditional statistical data when considering undesirable output. Classic ways of transforming streaming data and LASSO (Least Absolute Shrinkage and Selection Operator) regression are both used for transforming streaming data in the new DEA approach. An empirical study shows the results of dimension reduction of big data and the difference in efficiency scores obtained based on them. Also, a robustness analysis illustrates how the number of variables influences the efficiency result. The models presented in this paper are utilized to calculate the environmental efficiency of 252 of China’s cities in 2020, considering both statistical data and daily air quality index data. The efficiency results also show a link between efficiency and city size by dividing all cities into five categories." @default.
- W4319989303 created "2023-02-11" @default.
- W4319989303 creator A5036060359 @default.
- W4319989303 creator A5046861518 @default.
- W4319989303 creator A5063663875 @default.
- W4319989303 date "2023-03-01" @default.
- W4319989303 modified "2023-10-16" @default.
- W4319989303 title "Assessing environmental performance with big data: A DEA model with multiple data resources" @default.
- W4319989303 cites W2029807558 @default.
- W4319989303 cites W2049116370 @default.
- W4319989303 cites W2071560435 @default.
- W4319989303 cites W2076452041 @default.
- W4319989303 cites W2086748555 @default.
- W4319989303 cites W2088111602 @default.
- W4319989303 cites W2094741065 @default.
- W4319989303 cites W2096623256 @default.
- W4319989303 cites W2205838304 @default.
- W4319989303 cites W2506753585 @default.
- W4319989303 cites W2550569192 @default.
- W4319989303 cites W2553856000 @default.
- W4319989303 cites W2714334518 @default.
- W4319989303 cites W2790312742 @default.
- W4319989303 cites W2808893058 @default.
- W4319989303 cites W2862140477 @default.
- W4319989303 cites W2883762489 @default.
- W4319989303 cites W2884075450 @default.
- W4319989303 cites W2895959479 @default.
- W4319989303 cites W2899304741 @default.
- W4319989303 cites W2963314888 @default.
- W4319989303 cites W2965940735 @default.
- W4319989303 cites W2969868470 @default.
- W4319989303 cites W3015870885 @default.
- W4319989303 cites W3028432431 @default.
- W4319989303 cites W3034419191 @default.
- W4319989303 cites W3042630343 @default.
- W4319989303 cites W3092891056 @default.
- W4319989303 cites W3121810465 @default.
- W4319989303 cites W3136029065 @default.
- W4319989303 cites W3173997046 @default.
- W4319989303 cites W3197993026 @default.
- W4319989303 doi "https://doi.org/10.1016/j.cie.2023.109041" @default.
- W4319989303 hasPublicationYear "2023" @default.
- W4319989303 type Work @default.
- W4319989303 citedByCount "0" @default.
- W4319989303 crossrefType "journal-article" @default.
- W4319989303 hasAuthorship W4319989303A5036060359 @default.
- W4319989303 hasAuthorship W4319989303A5046861518 @default.
- W4319989303 hasAuthorship W4319989303A5063663875 @default.
- W4319989303 hasConcept C104317684 @default.
- W4319989303 hasConcept C105795698 @default.
- W4319989303 hasConcept C124101348 @default.
- W4319989303 hasConcept C127413603 @default.
- W4319989303 hasConcept C136764020 @default.
- W4319989303 hasConcept C149782125 @default.
- W4319989303 hasConcept C176217482 @default.
- W4319989303 hasConcept C185592680 @default.
- W4319989303 hasConcept C202444582 @default.
- W4319989303 hasConcept C21547014 @default.
- W4319989303 hasConcept C22088475 @default.
- W4319989303 hasConcept C24756922 @default.
- W4319989303 hasConcept C33676613 @default.
- W4319989303 hasConcept C33923547 @default.
- W4319989303 hasConcept C37616216 @default.
- W4319989303 hasConcept C41008148 @default.
- W4319989303 hasConcept C55493867 @default.
- W4319989303 hasConcept C63479239 @default.
- W4319989303 hasConcept C75684735 @default.
- W4319989303 hasConceptScore W4319989303C104317684 @default.
- W4319989303 hasConceptScore W4319989303C105795698 @default.
- W4319989303 hasConceptScore W4319989303C124101348 @default.
- W4319989303 hasConceptScore W4319989303C127413603 @default.
- W4319989303 hasConceptScore W4319989303C136764020 @default.
- W4319989303 hasConceptScore W4319989303C149782125 @default.
- W4319989303 hasConceptScore W4319989303C176217482 @default.
- W4319989303 hasConceptScore W4319989303C185592680 @default.
- W4319989303 hasConceptScore W4319989303C202444582 @default.
- W4319989303 hasConceptScore W4319989303C21547014 @default.
- W4319989303 hasConceptScore W4319989303C22088475 @default.
- W4319989303 hasConceptScore W4319989303C24756922 @default.
- W4319989303 hasConceptScore W4319989303C33676613 @default.
- W4319989303 hasConceptScore W4319989303C33923547 @default.
- W4319989303 hasConceptScore W4319989303C37616216 @default.
- W4319989303 hasConceptScore W4319989303C41008148 @default.
- W4319989303 hasConceptScore W4319989303C55493867 @default.
- W4319989303 hasConceptScore W4319989303C63479239 @default.
- W4319989303 hasConceptScore W4319989303C75684735 @default.
- W4319989303 hasFunder F4320321001 @default.
- W4319989303 hasLocation W43199893031 @default.
- W4319989303 hasOpenAccess W4319989303 @default.
- W4319989303 hasPrimaryLocation W43199893031 @default.
- W4319989303 hasRelatedWork W1989536514 @default.
- W4319989303 hasRelatedWork W2050968896 @default.
- W4319989303 hasRelatedWork W2166382555 @default.
- W4319989303 hasRelatedWork W2245479382 @default.
- W4319989303 hasRelatedWork W2250049464 @default.
- W4319989303 hasRelatedWork W2891888580 @default.
- W4319989303 hasRelatedWork W2962841228 @default.
- W4319989303 hasRelatedWork W2972874322 @default.