Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319990090> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4319990090 endingPage "412" @default.
- W4319990090 startingPage "392" @default.
- W4319990090 abstract "Line-of-sight link blockages represent a key challenge for the reliability and latency of millimeter wave (mmWave) and terahertz (THz) communication networks. To address this challenge, this paper leverages mmWave and LiDAR sensory data to provide awareness about the communication environment and proactively predict dynamic link blockages before they occur. This allows the network to make proactive decisions for hand-off/beam switching, enhancing the network reliability and latency. More specifically, this paper addresses the following key questions: (i) Can we predict a line-of-sight link blockage, before it happens, using in-band mmWave/THz signal and LiDAR sensing data? (ii) Can we also predict when this blockage will occur? (iii) Can we predict the blockage duration? And (iv) can we predict the direction of the moving blockage? For that, we develop machine learning solutions that learn special patterns of the received signal and sensory data, which we call pre-blockage signatures, to infer future blockages. To evaluate the proposed approaches, we build a large-scale real-world dataset that comprises co-existing LiDAR and mmWave communication measurements in outdoor vehicular scenarios. Then, we develop an efficient LiDAR data denoising algorithm that applies some pre-processing to the LiDAR data. Based on the real-world dataset, the developed approaches are shown to achieve above 95% accuracy in predicting blockages occurring within 100 ms and more than 80% prediction accuracy for blockages occurring within one second. Given this future blockage prediction capability, the paper also shows that the developed solutions can achieve an order of magnitude saving in network latency, which further highlights the potential of the developed blockage prediction solutions for wireless networks." @default.
- W4319990090 created "2023-02-11" @default.
- W4319990090 creator A5003243464 @default.
- W4319990090 creator A5025336372 @default.
- W4319990090 creator A5071471496 @default.
- W4319990090 date "2023-01-01" @default.
- W4319990090 modified "2023-10-14" @default.
- W4319990090 title "Proactively Predicting Dynamic 6G Link Blockages Using LiDAR and In-Band Signatures" @default.
- W4319990090 cites W2116334496 @default.
- W4319990090 cites W2117539524 @default.
- W4319990090 cites W2194775991 @default.
- W4319990090 cites W2575875755 @default.
- W4319990090 cites W2587051564 @default.
- W4319990090 cites W2724926863 @default.
- W4319990090 cites W2810871807 @default.
- W4319990090 cites W2906788812 @default.
- W4319990090 cites W2955897898 @default.
- W4319990090 cites W2963037989 @default.
- W4319990090 cites W2963648888 @default.
- W4319990090 cites W2970203070 @default.
- W4319990090 cites W2985551774 @default.
- W4319990090 cites W3001909141 @default.
- W4319990090 cites W3036327743 @default.
- W4319990090 cites W3039059058 @default.
- W4319990090 cites W3043284621 @default.
- W4319990090 cites W3091391704 @default.
- W4319990090 cites W3100000822 @default.
- W4319990090 cites W3100119410 @default.
- W4319990090 cites W3118368083 @default.
- W4319990090 cites W3194668692 @default.
- W4319990090 cites W3211744402 @default.
- W4319990090 cites W3212289002 @default.
- W4319990090 cites W3212407382 @default.
- W4319990090 cites W3212590122 @default.
- W4319990090 cites W3214001602 @default.
- W4319990090 cites W4207037760 @default.
- W4319990090 doi "https://doi.org/10.1109/ojcoms.2023.3239434" @default.
- W4319990090 hasPublicationYear "2023" @default.
- W4319990090 type Work @default.
- W4319990090 citedByCount "0" @default.
- W4319990090 crossrefType "journal-article" @default.
- W4319990090 hasAuthorship W4319990090A5003243464 @default.
- W4319990090 hasAuthorship W4319990090A5025336372 @default.
- W4319990090 hasAuthorship W4319990090A5071471496 @default.
- W4319990090 hasBestOaLocation W43199900901 @default.
- W4319990090 hasConcept C121332964 @default.
- W4319990090 hasConcept C124101348 @default.
- W4319990090 hasConcept C127313418 @default.
- W4319990090 hasConcept C163258240 @default.
- W4319990090 hasConcept C26517878 @default.
- W4319990090 hasConcept C31258907 @default.
- W4319990090 hasConcept C38652104 @default.
- W4319990090 hasConcept C41008148 @default.
- W4319990090 hasConcept C43214815 @default.
- W4319990090 hasConcept C46637626 @default.
- W4319990090 hasConcept C51399673 @default.
- W4319990090 hasConcept C62520636 @default.
- W4319990090 hasConcept C62649853 @default.
- W4319990090 hasConcept C76155785 @default.
- W4319990090 hasConcept C79403827 @default.
- W4319990090 hasConcept C82876162 @default.
- W4319990090 hasConceptScore W4319990090C121332964 @default.
- W4319990090 hasConceptScore W4319990090C124101348 @default.
- W4319990090 hasConceptScore W4319990090C127313418 @default.
- W4319990090 hasConceptScore W4319990090C163258240 @default.
- W4319990090 hasConceptScore W4319990090C26517878 @default.
- W4319990090 hasConceptScore W4319990090C31258907 @default.
- W4319990090 hasConceptScore W4319990090C38652104 @default.
- W4319990090 hasConceptScore W4319990090C41008148 @default.
- W4319990090 hasConceptScore W4319990090C43214815 @default.
- W4319990090 hasConceptScore W4319990090C46637626 @default.
- W4319990090 hasConceptScore W4319990090C51399673 @default.
- W4319990090 hasConceptScore W4319990090C62520636 @default.
- W4319990090 hasConceptScore W4319990090C62649853 @default.
- W4319990090 hasConceptScore W4319990090C76155785 @default.
- W4319990090 hasConceptScore W4319990090C79403827 @default.
- W4319990090 hasConceptScore W4319990090C82876162 @default.
- W4319990090 hasFunder F4320306076 @default.
- W4319990090 hasLocation W43199900901 @default.
- W4319990090 hasLocation W43199900902 @default.
- W4319990090 hasOpenAccess W4319990090 @default.
- W4319990090 hasPrimaryLocation W43199900901 @default.
- W4319990090 hasRelatedWork W1574680451 @default.
- W4319990090 hasRelatedWork W2048574738 @default.
- W4319990090 hasRelatedWork W2084242067 @default.
- W4319990090 hasRelatedWork W2149294715 @default.
- W4319990090 hasRelatedWork W2226826524 @default.
- W4319990090 hasRelatedWork W2383341208 @default.
- W4319990090 hasRelatedWork W2625315266 @default.
- W4319990090 hasRelatedWork W2909132900 @default.
- W4319990090 hasRelatedWork W3203485577 @default.
- W4319990090 hasRelatedWork W4297234917 @default.
- W4319990090 hasVolume "4" @default.
- W4319990090 isParatext "false" @default.
- W4319990090 isRetracted "false" @default.
- W4319990090 workType "article" @default.