Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319993000> ?p ?o ?g. }
- W4319993000 endingPage "278" @default.
- W4319993000 startingPage "263" @default.
- W4319993000 abstract "In recent decades, the automatic emotion state classification is an important technology for human-machine interactions. In Electroencephalography (EEG) based emotion classification, most of the existing methodologies cannot capture the context information of the EEG signal and ignore the correlation information between dissimilar EEG channels. Therefore, in this study, a deep learning based automatic method is proposed for effective emotion state classification. Firstly, the EEG signals were acquired from the real time and databases for emotion analysis using physiological signals (DEAP), and further, the band-pass filter from 0.3 Hz to 45 Hz is utilized to eliminate both high and low-frequency noise. Next, two feature extraction techniques power spectral density and differential entropy were employed for extracting active feature values, which effectively learn the contextual and spatial information of EEG signals. Finally, principal component analysis and artificial neural network were developed for feature dimensionality reduction and emotion state classification. The experimental evaluation showed that the proposed method achieved 96.38% and 97.36% of accuracy on DEAP, and 92.33% and 89.37% of accuracy on a real-time database for arousal and valence emotion states. The achieved recognition accuracy is higher compared to the support vector machine on both databases." @default.
- W4319993000 created "2023-02-11" @default.
- W4319993000 creator A5058666728 @default.
- W4319993000 creator A5060815826 @default.
- W4319993000 creator A5079996885 @default.
- W4319993000 date "2023-02-03" @default.
- W4319993000 modified "2023-09-26" @default.
- W4319993000 title "Electroencephalography based human emotion state classification using principal component analysis and artificial neural network" @default.
- W4319993000 cites W1973469438 @default.
- W4319993000 cites W1994314787 @default.
- W4319993000 cites W2002055708 @default.
- W4319993000 cites W2056583019 @default.
- W4319993000 cites W2074838957 @default.
- W4319993000 cites W2467010667 @default.
- W4319993000 cites W2553862339 @default.
- W4319993000 cites W2731836491 @default.
- W4319993000 cites W2762323924 @default.
- W4319993000 cites W2772766867 @default.
- W4319993000 cites W2790404832 @default.
- W4319993000 cites W2888184955 @default.
- W4319993000 cites W2897751982 @default.
- W4319993000 cites W2903462437 @default.
- W4319993000 cites W2913846632 @default.
- W4319993000 cites W2922188941 @default.
- W4319993000 cites W2926366943 @default.
- W4319993000 cites W2944401411 @default.
- W4319993000 cites W2946812942 @default.
- W4319993000 cites W2960283727 @default.
- W4319993000 cites W2975985722 @default.
- W4319993000 cites W2982299617 @default.
- W4319993000 cites W2983154683 @default.
- W4319993000 cites W2985653130 @default.
- W4319993000 cites W3000232078 @default.
- W4319993000 cites W3004735003 @default.
- W4319993000 cites W3014215018 @default.
- W4319993000 cites W3024961463 @default.
- W4319993000 cites W3030703790 @default.
- W4319993000 cites W3044186523 @default.
- W4319993000 cites W3082367983 @default.
- W4319993000 cites W3108087271 @default.
- W4319993000 cites W3114802091 @default.
- W4319993000 cites W3120598210 @default.
- W4319993000 cites W3128898807 @default.
- W4319993000 cites W3156356077 @default.
- W4319993000 cites W3166097160 @default.
- W4319993000 cites W3169095106 @default.
- W4319993000 cites W3175707965 @default.
- W4319993000 cites W3177392932 @default.
- W4319993000 cites W3191506960 @default.
- W4319993000 cites W3193300679 @default.
- W4319993000 cites W4210670268 @default.
- W4319993000 doi "https://doi.org/10.3233/mgs-220333" @default.
- W4319993000 hasPublicationYear "2023" @default.
- W4319993000 type Work @default.
- W4319993000 citedByCount "0" @default.
- W4319993000 crossrefType "journal-article" @default.
- W4319993000 hasAuthorship W4319993000A5058666728 @default.
- W4319993000 hasAuthorship W4319993000A5060815826 @default.
- W4319993000 hasAuthorship W4319993000A5079996885 @default.
- W4319993000 hasConcept C118552586 @default.
- W4319993000 hasConcept C12267149 @default.
- W4319993000 hasConcept C151730666 @default.
- W4319993000 hasConcept C153180895 @default.
- W4319993000 hasConcept C154945302 @default.
- W4319993000 hasConcept C15744967 @default.
- W4319993000 hasConcept C206310091 @default.
- W4319993000 hasConcept C27438332 @default.
- W4319993000 hasConcept C2779343474 @default.
- W4319993000 hasConcept C28490314 @default.
- W4319993000 hasConcept C41008148 @default.
- W4319993000 hasConcept C50644808 @default.
- W4319993000 hasConcept C522805319 @default.
- W4319993000 hasConcept C52622490 @default.
- W4319993000 hasConcept C70518039 @default.
- W4319993000 hasConcept C86803240 @default.
- W4319993000 hasConceptScore W4319993000C118552586 @default.
- W4319993000 hasConceptScore W4319993000C12267149 @default.
- W4319993000 hasConceptScore W4319993000C151730666 @default.
- W4319993000 hasConceptScore W4319993000C153180895 @default.
- W4319993000 hasConceptScore W4319993000C154945302 @default.
- W4319993000 hasConceptScore W4319993000C15744967 @default.
- W4319993000 hasConceptScore W4319993000C206310091 @default.
- W4319993000 hasConceptScore W4319993000C27438332 @default.
- W4319993000 hasConceptScore W4319993000C2779343474 @default.
- W4319993000 hasConceptScore W4319993000C28490314 @default.
- W4319993000 hasConceptScore W4319993000C41008148 @default.
- W4319993000 hasConceptScore W4319993000C50644808 @default.
- W4319993000 hasConceptScore W4319993000C522805319 @default.
- W4319993000 hasConceptScore W4319993000C52622490 @default.
- W4319993000 hasConceptScore W4319993000C70518039 @default.
- W4319993000 hasConceptScore W4319993000C86803240 @default.
- W4319993000 hasIssue "3-4" @default.
- W4319993000 hasLocation W43199930001 @default.
- W4319993000 hasOpenAccess W4319993000 @default.
- W4319993000 hasPrimaryLocation W43199930001 @default.
- W4319993000 hasRelatedWork W1677378707 @default.
- W4319993000 hasRelatedWork W2091080939 @default.
- W4319993000 hasRelatedWork W2096566459 @default.