Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319993048> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4319993048 endingPage "100169" @default.
- W4319993048 startingPage "100169" @default.
- W4319993048 abstract "Chronic Kidney Disease (CKD) is one of the most prevalent and fatal diseases influencing people on a larger that remains dormant until irreversible damage has been done to an individual’s kidney. Progression of CKD is related to a variety of great complications, including increased incidence of various disorders, anemia, hyperlipidemia, nerve damage, pregnancy complication, and even complete kidney failure. Millions of people die from this disease every year. Diagnosing CKD is a cumbersome task as no major symptoms can be used as a benchmark to detect the disease. In cases when diagnosis persists, some results may be interpreted incorrectly. This study proposes using a deep neural network-based Multi-Layer Perceptron Classifier to diagnose CKD in patients. The model was trained using data from 400 people and considered various symptoms and signs, including age, blood sugar, red blood cell count, etc. Experiments reveal that the proposed model achieves perfect testing accuracy in classification tasks. Our goal is to facilitate introducing Deep Learning approaches to learning from the dataset attribute reports and accurately detecting CKD. The paper’s primary contribution is a Deep Neural Network model for chronic kidney disease diagnosis that achieves 100% accuracy, outperforming standard machine learning models such as support vector machines and naive Bayes classifiers. This paper provides a detailed explanation of the multi-layer perceptron classifier, which uses the deep neural network provided by the PyTorch library as its basis. Neural models can be a better alternative for adaption techniques for classifying chronic kidney disease Because they can handle non-linearity in the data, compute complex data heaps fetched from datasets, and adapt and learn on their own about the key information using the layers of neurons present in the structure." @default.
- W4319993048 created "2023-02-11" @default.
- W4319993048 creator A5001796396 @default.
- W4319993048 creator A5017406397 @default.
- W4319993048 creator A5022020548 @default.
- W4319993048 creator A5067100603 @default.
- W4319993048 date "2023-03-01" @default.
- W4319993048 modified "2023-10-05" @default.
- W4319993048 title "A comparative assessment of artificial intelligence models used for early prediction and evaluation of chronic kidney disease" @default.
- W4319993048 cites W2122524833 @default.
- W4319993048 cites W2164249826 @default.
- W4319993048 cites W2414208461 @default.
- W4319993048 cites W2566478702 @default.
- W4319993048 cites W2794162379 @default.
- W4319993048 cites W2973653562 @default.
- W4319993048 cites W3004678548 @default.
- W4319993048 cites W3011408237 @default.
- W4319993048 cites W3021399285 @default.
- W4319993048 cites W3025767749 @default.
- W4319993048 cites W3033515365 @default.
- W4319993048 cites W3112958644 @default.
- W4319993048 cites W3114299424 @default.
- W4319993048 cites W3125584267 @default.
- W4319993048 cites W4205931509 @default.
- W4319993048 cites W4307167872 @default.
- W4319993048 doi "https://doi.org/10.1016/j.dajour.2023.100169" @default.
- W4319993048 hasPublicationYear "2023" @default.
- W4319993048 type Work @default.
- W4319993048 citedByCount "6" @default.
- W4319993048 countsByYear W43199930482023 @default.
- W4319993048 crossrefType "journal-article" @default.
- W4319993048 hasAuthorship W4319993048A5001796396 @default.
- W4319993048 hasAuthorship W4319993048A5017406397 @default.
- W4319993048 hasAuthorship W4319993048A5022020548 @default.
- W4319993048 hasAuthorship W4319993048A5067100603 @default.
- W4319993048 hasBestOaLocation W43199930481 @default.
- W4319993048 hasConcept C108583219 @default.
- W4319993048 hasConcept C119857082 @default.
- W4319993048 hasConcept C12267149 @default.
- W4319993048 hasConcept C126322002 @default.
- W4319993048 hasConcept C154945302 @default.
- W4319993048 hasConcept C179717631 @default.
- W4319993048 hasConcept C2778653478 @default.
- W4319993048 hasConcept C41008148 @default.
- W4319993048 hasConcept C50644808 @default.
- W4319993048 hasConcept C52001869 @default.
- W4319993048 hasConcept C60908668 @default.
- W4319993048 hasConcept C71924100 @default.
- W4319993048 hasConcept C95623464 @default.
- W4319993048 hasConceptScore W4319993048C108583219 @default.
- W4319993048 hasConceptScore W4319993048C119857082 @default.
- W4319993048 hasConceptScore W4319993048C12267149 @default.
- W4319993048 hasConceptScore W4319993048C126322002 @default.
- W4319993048 hasConceptScore W4319993048C154945302 @default.
- W4319993048 hasConceptScore W4319993048C179717631 @default.
- W4319993048 hasConceptScore W4319993048C2778653478 @default.
- W4319993048 hasConceptScore W4319993048C41008148 @default.
- W4319993048 hasConceptScore W4319993048C50644808 @default.
- W4319993048 hasConceptScore W4319993048C52001869 @default.
- W4319993048 hasConceptScore W4319993048C60908668 @default.
- W4319993048 hasConceptScore W4319993048C71924100 @default.
- W4319993048 hasConceptScore W4319993048C95623464 @default.
- W4319993048 hasLocation W43199930481 @default.
- W4319993048 hasOpenAccess W4319993048 @default.
- W4319993048 hasPrimaryLocation W43199930481 @default.
- W4319993048 hasRelatedWork W1501213224 @default.
- W4319993048 hasRelatedWork W2277832099 @default.
- W4319993048 hasRelatedWork W3168994312 @default.
- W4319993048 hasRelatedWork W4221021152 @default.
- W4319993048 hasRelatedWork W4223564025 @default.
- W4319993048 hasRelatedWork W4231994957 @default.
- W4319993048 hasRelatedWork W4280611221 @default.
- W4319993048 hasRelatedWork W4322750901 @default.
- W4319993048 hasRelatedWork W4381616756 @default.
- W4319993048 hasRelatedWork W4385452424 @default.
- W4319993048 hasVolume "6" @default.
- W4319993048 isParatext "false" @default.
- W4319993048 isRetracted "false" @default.
- W4319993048 workType "article" @default.