Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319993384> ?p ?o ?g. }
- W4319993384 endingPage "8772" @default.
- W4319993384 startingPage "8761" @default.
- W4319993384 abstract "Underground porosity is important in many earth sciences and engineering fields, including hydrocarbon reservoir characterization and geothermal energy production. Popular methods largely rely on the analysis of lithological core data, well logs, and seismic inversion methods. While these methods are reliable, they are also time-consuming, expensive, and difficult to implement. In addition, seismic inversion has nonlinearity, data dimensionality, and non-uniqueness issues. However, deep learning (DL) can provide a more flexible, efficient, and accurate capability by mapping directly from seismic attributes to underground porosity. Therefore, we trained several DL models with different optimization functions. In the training steps, we labelled every seismic attribute data point with its corresponding porosity derived from the well-logs. In contrast to popular ensemble techniques, we proposed a weighted prediction approach based on the strengths of each model. Testing results showed a coefficient of determination ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$text{R}^{2}$ </tex-math></inline-formula> ) of 0.94345 and a Pearson’s correlation coefficient of 0.9725 between the actual model and the model of the proposed approach, versus 0.9681 and 0.9716 for the best single and popular ensemble models, respectively. Further, we tested the effectiveness of our method using real seismic data from the North Sea. With a Pearson’s correlation value of 0.9743, the inverted model ranges from 27 to 35%, compared to the reference model, which has an overall range of 20 to 33%. These results provide insights into the potential of the proposed method and its applicability to any other seismic volume to determine spatially varying underground porosity from seismic attributes directly." @default.
- W4319993384 created "2023-02-11" @default.
- W4319993384 creator A5008754978 @default.
- W4319993384 creator A5013808428 @default.
- W4319993384 creator A5031956793 @default.
- W4319993384 creator A5070409954 @default.
- W4319993384 creator A5074464523 @default.
- W4319993384 date "2023-01-01" @default.
- W4319993384 modified "2023-10-09" @default.
- W4319993384 title "Ensemble Deep Learning-Based Porosity Inversion From Seismic Attributes" @default.
- W4319993384 cites W1918146339 @default.
- W4319993384 cites W2016054141 @default.
- W4319993384 cites W2037010342 @default.
- W4319993384 cites W2107425512 @default.
- W4319993384 cites W2108013305 @default.
- W4319993384 cites W2115629999 @default.
- W4319993384 cites W2125036621 @default.
- W4319993384 cites W2148945295 @default.
- W4319993384 cites W2159244295 @default.
- W4319993384 cites W2605316969 @default.
- W4319993384 cites W2807001101 @default.
- W4319993384 cites W2810812775 @default.
- W4319993384 cites W2890852886 @default.
- W4319993384 cites W2891111066 @default.
- W4319993384 cites W2892287369 @default.
- W4319993384 cites W2897246968 @default.
- W4319993384 cites W2927490830 @default.
- W4319993384 cites W2939587785 @default.
- W4319993384 cites W2944929296 @default.
- W4319993384 cites W2958524323 @default.
- W4319993384 cites W2958537367 @default.
- W4319993384 cites W2963294122 @default.
- W4319993384 cites W2964255494 @default.
- W4319993384 cites W2971476549 @default.
- W4319993384 cites W3004206781 @default.
- W4319993384 cites W3033311090 @default.
- W4319993384 cites W3083007428 @default.
- W4319993384 cites W3088867807 @default.
- W4319993384 cites W3127923433 @default.
- W4319993384 cites W3177439121 @default.
- W4319993384 cites W3197129675 @default.
- W4319993384 cites W3206221984 @default.
- W4319993384 cites W4235988989 @default.
- W4319993384 cites W4241770221 @default.
- W4319993384 cites W4308907893 @default.
- W4319993384 cites W4310253034 @default.
- W4319993384 doi "https://doi.org/10.1109/access.2023.3239688" @default.
- W4319993384 hasPublicationYear "2023" @default.
- W4319993384 type Work @default.
- W4319993384 citedByCount "1" @default.
- W4319993384 crossrefType "journal-article" @default.
- W4319993384 hasAuthorship W4319993384A5008754978 @default.
- W4319993384 hasAuthorship W4319993384A5013808428 @default.
- W4319993384 hasAuthorship W4319993384A5031956793 @default.
- W4319993384 hasAuthorship W4319993384A5070409954 @default.
- W4319993384 hasAuthorship W4319993384A5074464523 @default.
- W4319993384 hasBestOaLocation W43199933841 @default.
- W4319993384 hasConcept C111766609 @default.
- W4319993384 hasConcept C11413529 @default.
- W4319993384 hasConcept C119857082 @default.
- W4319993384 hasConcept C124101348 @default.
- W4319993384 hasConcept C127313418 @default.
- W4319993384 hasConcept C14641988 @default.
- W4319993384 hasConcept C154945302 @default.
- W4319993384 hasConcept C159737794 @default.
- W4319993384 hasConcept C165205528 @default.
- W4319993384 hasConcept C187320778 @default.
- W4319993384 hasConcept C1893757 @default.
- W4319993384 hasConcept C2524010 @default.
- W4319993384 hasConcept C2780092901 @default.
- W4319993384 hasConcept C33923547 @default.
- W4319993384 hasConcept C39267094 @default.
- W4319993384 hasConcept C41008148 @default.
- W4319993384 hasConcept C518406490 @default.
- W4319993384 hasConcept C64370902 @default.
- W4319993384 hasConcept C6648577 @default.
- W4319993384 hasConcept C77928131 @default.
- W4319993384 hasConcept C78762247 @default.
- W4319993384 hasConcept C8058405 @default.
- W4319993384 hasConceptScore W4319993384C111766609 @default.
- W4319993384 hasConceptScore W4319993384C11413529 @default.
- W4319993384 hasConceptScore W4319993384C119857082 @default.
- W4319993384 hasConceptScore W4319993384C124101348 @default.
- W4319993384 hasConceptScore W4319993384C127313418 @default.
- W4319993384 hasConceptScore W4319993384C14641988 @default.
- W4319993384 hasConceptScore W4319993384C154945302 @default.
- W4319993384 hasConceptScore W4319993384C159737794 @default.
- W4319993384 hasConceptScore W4319993384C165205528 @default.
- W4319993384 hasConceptScore W4319993384C187320778 @default.
- W4319993384 hasConceptScore W4319993384C1893757 @default.
- W4319993384 hasConceptScore W4319993384C2524010 @default.
- W4319993384 hasConceptScore W4319993384C2780092901 @default.
- W4319993384 hasConceptScore W4319993384C33923547 @default.
- W4319993384 hasConceptScore W4319993384C39267094 @default.
- W4319993384 hasConceptScore W4319993384C41008148 @default.
- W4319993384 hasConceptScore W4319993384C518406490 @default.
- W4319993384 hasConceptScore W4319993384C64370902 @default.
- W4319993384 hasConceptScore W4319993384C6648577 @default.