Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319993406> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4319993406 endingPage "564" @default.
- W4319993406 startingPage "551" @default.
- W4319993406 abstract "The big break in data collection tools of large-scale networks from biological, social, and technological domains expands the challenge of their visualization and processing. Numerous structural and statistical backbone extraction techniques aim to reduce the network’s size while preserving its gist. Here, we perform an experimental comparison of seven main statistical methods in an air transportation case study. Correlations analysis shows that Marginal Likelihood Filter (MLF), Locally Adaptive Network Sparsification Filter (LANS), and Disparity Filter are biased toward high weighted edges. We compare the extracted backbones using four indicators: the size of the largest component, the number of nodes, edges, and the total weight. Results show that techniques based on a binomial distribution null model (MLF and Noise Corrected Filter) tend to retain many edges. Conversely, Disparity Filter, Polya Urn Filter, LANS Filter, and Global Statistical Significance Filter (GLOSS) are pretty aggressive in filtering edges. The ECM Filter lies between these two behaviors. These results may guide users in selecting appropriate techniques for their applications." @default.
- W4319993406 created "2023-02-11" @default.
- W4319993406 creator A5005723915 @default.
- W4319993406 creator A5006125158 @default.
- W4319993406 creator A5045655458 @default.
- W4319993406 creator A5079753964 @default.
- W4319993406 date "2023-01-01" @default.
- W4319993406 modified "2023-10-14" @default.
- W4319993406 title "Air Transport Network: A Comparison of Statistical Backbone Filtering Techniques" @default.
- W4319993406 cites W1641881534 @default.
- W4319993406 cites W1965680834 @default.
- W4319993406 cites W1975959061 @default.
- W4319993406 cites W1990365639 @default.
- W4319993406 cites W2038793346 @default.
- W4319993406 cites W2076248831 @default.
- W4319993406 cites W2077613066 @default.
- W4319993406 cites W2087459024 @default.
- W4319993406 cites W2090867568 @default.
- W4319993406 cites W2092084789 @default.
- W4319993406 cites W2093924137 @default.
- W4319993406 cites W2097278341 @default.
- W4319993406 cites W2105648063 @default.
- W4319993406 cites W2148015259 @default.
- W4319993406 cites W2149055390 @default.
- W4319993406 cites W2490810262 @default.
- W4319993406 cites W2512714520 @default.
- W4319993406 cites W2581780941 @default.
- W4319993406 cites W2790959153 @default.
- W4319993406 cites W2803154490 @default.
- W4319993406 cites W2809256891 @default.
- W4319993406 cites W2883365145 @default.
- W4319993406 cites W2967052953 @default.
- W4319993406 cites W3100666529 @default.
- W4319993406 cites W3104596680 @default.
- W4319993406 cites W3104660771 @default.
- W4319993406 cites W3121062861 @default.
- W4319993406 cites W3126033509 @default.
- W4319993406 cites W3154037482 @default.
- W4319993406 cites W3176087376 @default.
- W4319993406 cites W3205654403 @default.
- W4319993406 cites W3215454678 @default.
- W4319993406 cites W4213429044 @default.
- W4319993406 doi "https://doi.org/10.1007/978-3-031-21131-7_43" @default.
- W4319993406 hasPublicationYear "2023" @default.
- W4319993406 type Work @default.
- W4319993406 citedByCount "0" @default.
- W4319993406 crossrefType "book-chapter" @default.
- W4319993406 hasAuthorship W4319993406A5005723915 @default.
- W4319993406 hasAuthorship W4319993406A5006125158 @default.
- W4319993406 hasAuthorship W4319993406A5045655458 @default.
- W4319993406 hasAuthorship W4319993406A5079753964 @default.
- W4319993406 hasConcept C102248274 @default.
- W4319993406 hasConcept C106131492 @default.
- W4319993406 hasConcept C11413529 @default.
- W4319993406 hasConcept C124101348 @default.
- W4319993406 hasConcept C154945302 @default.
- W4319993406 hasConcept C31972630 @default.
- W4319993406 hasConcept C33923547 @default.
- W4319993406 hasConcept C36464697 @default.
- W4319993406 hasConcept C41008148 @default.
- W4319993406 hasConceptScore W4319993406C102248274 @default.
- W4319993406 hasConceptScore W4319993406C106131492 @default.
- W4319993406 hasConceptScore W4319993406C11413529 @default.
- W4319993406 hasConceptScore W4319993406C124101348 @default.
- W4319993406 hasConceptScore W4319993406C154945302 @default.
- W4319993406 hasConceptScore W4319993406C31972630 @default.
- W4319993406 hasConceptScore W4319993406C33923547 @default.
- W4319993406 hasConceptScore W4319993406C36464697 @default.
- W4319993406 hasConceptScore W4319993406C41008148 @default.
- W4319993406 hasLocation W43199934061 @default.
- W4319993406 hasOpenAccess W4319993406 @default.
- W4319993406 hasPrimaryLocation W43199934061 @default.
- W4319993406 hasRelatedWork W1984721631 @default.
- W4319993406 hasRelatedWork W2006812948 @default.
- W4319993406 hasRelatedWork W2022457400 @default.
- W4319993406 hasRelatedWork W2113644136 @default.
- W4319993406 hasRelatedWork W2125753044 @default.
- W4319993406 hasRelatedWork W2215572990 @default.
- W4319993406 hasRelatedWork W2294507878 @default.
- W4319993406 hasRelatedWork W2347840588 @default.
- W4319993406 hasRelatedWork W4308793406 @default.
- W4319993406 hasRelatedWork W8095975 @default.
- W4319993406 isParatext "false" @default.
- W4319993406 isRetracted "false" @default.
- W4319993406 workType "book-chapter" @default.