Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319993669> ?p ?o ?g. }
- W4319993669 endingPage "6" @default.
- W4319993669 startingPage "6" @default.
- W4319993669 abstract "Lung cancer has long been the leading cause of cancer deaths in the United States. Lung cancer has a poor prognosis, and our understanding of who will maximally benefit from different therapies is incomplete. This article discusses genetic biomarkers that may help in this regard.From origin until February 25, 2022, PubMed database was searched for terms non-small cell lung cancer, genomics and biomarker, with special attention paid to literature published within the past 10 years. Search was language restricted to English. Additional literature was identified through hand searches of the references of retrieved literature.The most robustly described biomarkers for non-small cell lung cancer (NSCLC) are assessment of specific gene mutations. These are currently used in clinical practice for both prediction and prognostication. Abnormal mutation status of STK11/LKB1 and KEAP1-NFE2L2 are associated with poor response to radiotherapy (RT), and STK11/LKB1 is further associated with resistance to PD-L1 immunotherapy. Abnormal TP53 is associated with decreased benefit from cisplatin in squamous cell carcinoma (SCC). In terms of prognostication, RB1 mutations are associated with decreased overall survival (OS) in NSCLC and KEAP1-NFE2L2 mutations are associated with increased local recurrence (LR).Additional work has focused on gene expression levels, as well as analysis of genetic factors and signaling molecules affecting the tumor microenvironment (TME). High levels of Rad51c and NFE2L2 are associated with resistance to chemotherapy, and high Rad51c levels are further associated with resistance to RT. High nuclear expression of β-catenin has additionally been associated with poor RT response. Further, there is increasing evidence that some long non-coding RNAs (lncRNAs) may play a crucial role in regulation of tumor radiosensitivity. Much of this work has had promising early results but will require further validation before routine clinical use. Finally, there is evidence that quantification of some signaling molecules and microRNAs (miRNAs) may have clinical utility in predicting adverse outcomes in RT.An improved understanding of tumor genetics in NSCLC has led to the development of targeted therapies and improved prognostication. As more work is done in this field, more and more genetic biomarkers will become candidates for clinical use. Much work will be required to validate these findings in the clinical setting." @default.
- W4319993669 created "2023-02-11" @default.
- W4319993669 creator A5006355538 @default.
- W4319993669 creator A5018581078 @default.
- W4319993669 creator A5069565044 @default.
- W4319993669 date "2023-03-01" @default.
- W4319993669 modified "2023-09-26" @default.
- W4319993669 title "A narrative review of genetic biomarkers in non-small cell lung cancer: an update and future perspectives" @default.
- W4319993669 cites W1107917109 @default.
- W4319993669 cites W1510735640 @default.
- W4319993669 cites W1968899146 @default.
- W4319993669 cites W1982488143 @default.
- W4319993669 cites W1985106225 @default.
- W4319993669 cites W2006419043 @default.
- W4319993669 cites W2016489352 @default.
- W4319993669 cites W2029919331 @default.
- W4319993669 cites W2030196526 @default.
- W4319993669 cites W2045506022 @default.
- W4319993669 cites W2076910098 @default.
- W4319993669 cites W2088847092 @default.
- W4319993669 cites W2095598060 @default.
- W4319993669 cites W2113307269 @default.
- W4319993669 cites W2116142233 @default.
- W4319993669 cites W2118982164 @default.
- W4319993669 cites W2129277646 @default.
- W4319993669 cites W2129590156 @default.
- W4319993669 cites W2130430382 @default.
- W4319993669 cites W2143689609 @default.
- W4319993669 cites W2158086631 @default.
- W4319993669 cites W2160834915 @default.
- W4319993669 cites W2161523978 @default.
- W4319993669 cites W2163798887 @default.
- W4319993669 cites W2167278653 @default.
- W4319993669 cites W2180481128 @default.
- W4319993669 cites W2237797200 @default.
- W4319993669 cites W2264814212 @default.
- W4319993669 cites W2275877493 @default.
- W4319993669 cites W2339638771 @default.
- W4319993669 cites W2347045910 @default.
- W4319993669 cites W2487936910 @default.
- W4319993669 cites W2521343068 @default.
- W4319993669 cites W2529023750 @default.
- W4319993669 cites W2560367415 @default.
- W4319993669 cites W2572174216 @default.
- W4319993669 cites W2583005085 @default.
- W4319993669 cites W2588167481 @default.
- W4319993669 cites W2596281330 @default.
- W4319993669 cites W2601956340 @default.
- W4319993669 cites W2603411876 @default.
- W4319993669 cites W2655262992 @default.
- W4319993669 cites W2733991343 @default.
- W4319993669 cites W2749335807 @default.
- W4319993669 cites W2758789825 @default.
- W4319993669 cites W2761809127 @default.
- W4319993669 cites W2784371446 @default.
- W4319993669 cites W2789662105 @default.
- W4319993669 cites W2804812017 @default.
- W4319993669 cites W2805518365 @default.
- W4319993669 cites W2810370219 @default.
- W4319993669 cites W2810955728 @default.
- W4319993669 cites W2917631733 @default.
- W4319993669 cites W2924379719 @default.
- W4319993669 cites W2931304009 @default.
- W4319993669 cites W2952506496 @default.
- W4319993669 cites W2964471257 @default.
- W4319993669 cites W2982253555 @default.
- W4319993669 cites W2997761377 @default.
- W4319993669 cites W2999189901 @default.
- W4319993669 cites W3004929071 @default.
- W4319993669 cites W3006378317 @default.
- W4319993669 cites W3007064031 @default.
- W4319993669 cites W3013961713 @default.
- W4319993669 cites W3035698550 @default.
- W4319993669 cites W3045268344 @default.
- W4319993669 cites W3092347861 @default.
- W4319993669 cites W3092974651 @default.
- W4319993669 cites W3094210836 @default.
- W4319993669 cites W3101864143 @default.
- W4319993669 cites W3104451825 @default.
- W4319993669 cites W3111311106 @default.
- W4319993669 cites W3112349893 @default.
- W4319993669 cites W3135988286 @default.
- W4319993669 cites W3136351248 @default.
- W4319993669 cites W3155376330 @default.
- W4319993669 cites W3164117097 @default.
- W4319993669 cites W3174038187 @default.
- W4319993669 cites W3178471422 @default.
- W4319993669 cites W3201393411 @default.
- W4319993669 cites W3206224688 @default.
- W4319993669 cites W3215921195 @default.
- W4319993669 cites W4206841660 @default.
- W4319993669 cites W4285826166 @default.
- W4319993669 cites W4287073427 @default.
- W4319993669 doi "https://doi.org/10.21037/amj-2022-01" @default.
- W4319993669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37025121" @default.
- W4319993669 hasPublicationYear "2023" @default.
- W4319993669 type Work @default.
- W4319993669 citedByCount "0" @default.