Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319996475> ?p ?o ?g. }
- W4319996475 endingPage "3701" @default.
- W4319996475 startingPage "3678" @default.
- W4319996475 abstract "Within the next several years, there will be a high level of autonomous technology that will be available for widespread use, which will reduce labor costs, increase safety, save energy, enable difficult unmanned tasks in harsh environments, and eliminate human error. Compared to software development for other autonomous vehicles, maritime software development, especially in aging but still functional fleets, is described as being in a very early and emerging phase. This presents great challenges and opportunities for researchers and engineers to develop maritime autonomous systems. Recent progress in sensor and communication technology has introduced the use of autonomous surface vehicles (ASVs) in applications such as coastline surveillance, oceanographic observation, multi-vehicle cooperation, and search and rescue missions. Advanced artificial intelligence technology, especially deep learning (DL) methods that conduct nonlinear mapping with self-learning representations, has brought the concept of full autonomy one step closer to reality. This article reviews existing work on the implementation of DL methods in fields related to ASV. First, the scope of this work is described after reviewing surveys on ASV developments and technologies, which draws attention to the research gap between DL and maritime operations. Then, DL-based navigation, guidance, control (NGC) systems and cooperative operations are presented. Finally, this survey is completed by highlighting current challenges and future research directions." @default.
- W4319996475 created "2023-02-11" @default.
- W4319996475 creator A5033254049 @default.
- W4319996475 creator A5049065207 @default.
- W4319996475 creator A5053091165 @default.
- W4319996475 creator A5053970487 @default.
- W4319996475 creator A5077640871 @default.
- W4319996475 creator A5090482974 @default.
- W4319996475 date "2023-04-01" @default.
- W4319996475 modified "2023-10-03" @default.
- W4319996475 title "Survey of Deep Learning for Autonomous Surface Vehicles in Marine Environments" @default.
- W4319996475 cites W1126616748 @default.
- W4319996475 cites W1489686018 @default.
- W4319996475 cites W1641957729 @default.
- W4319996475 cites W176700229 @default.
- W4319996475 cites W1866654860 @default.
- W4319996475 cites W1965406874 @default.
- W4319996475 cites W1973126591 @default.
- W4319996475 cites W1981257078 @default.
- W4319996475 cites W1991750513 @default.
- W4319996475 cites W2003001200 @default.
- W4319996475 cites W2010927284 @default.
- W4319996475 cites W2013928382 @default.
- W4319996475 cites W2014917749 @default.
- W4319996475 cites W2015299746 @default.
- W4319996475 cites W2021428083 @default.
- W4319996475 cites W2021468640 @default.
- W4319996475 cites W2024973123 @default.
- W4319996475 cites W2028323991 @default.
- W4319996475 cites W2032133542 @default.
- W4319996475 cites W2039984557 @default.
- W4319996475 cites W2040947304 @default.
- W4319996475 cites W2045567803 @default.
- W4319996475 cites W2047064833 @default.
- W4319996475 cites W2056862136 @default.
- W4319996475 cites W2067601831 @default.
- W4319996475 cites W2076085918 @default.
- W4319996475 cites W2084163350 @default.
- W4319996475 cites W2084808948 @default.
- W4319996475 cites W2091137637 @default.
- W4319996475 cites W2094437443 @default.
- W4319996475 cites W2095199472 @default.
- W4319996475 cites W2096190555 @default.
- W4319996475 cites W2098164165 @default.
- W4319996475 cites W2117948790 @default.
- W4319996475 cites W2125668523 @default.
- W4319996475 cites W2138108922 @default.
- W4319996475 cites W2145339207 @default.
- W4319996475 cites W2153344813 @default.
- W4319996475 cites W2160612266 @default.
- W4319996475 cites W2169024622 @default.
- W4319996475 cites W2172143602 @default.
- W4319996475 cites W2175452809 @default.
- W4319996475 cites W2209843567 @default.
- W4319996475 cites W2263932955 @default.
- W4319996475 cites W2334086641 @default.
- W4319996475 cites W2345644119 @default.
- W4319996475 cites W2372306012 @default.
- W4319996475 cites W2412588858 @default.
- W4319996475 cites W2460404912 @default.
- W4319996475 cites W2547578938 @default.
- W4319996475 cites W2555176140 @default.
- W4319996475 cites W2563026277 @default.
- W4319996475 cites W2572726358 @default.
- W4319996475 cites W2581967720 @default.
- W4319996475 cites W2584404397 @default.
- W4319996475 cites W2611823526 @default.
- W4319996475 cites W2624600449 @default.
- W4319996475 cites W2634113257 @default.
- W4319996475 cites W2728420778 @default.
- W4319996475 cites W2732304890 @default.
- W4319996475 cites W2744690378 @default.
- W4319996475 cites W2746411854 @default.
- W4319996475 cites W2746614361 @default.
- W4319996475 cites W2747165560 @default.
- W4319996475 cites W2748897120 @default.
- W4319996475 cites W2752510043 @default.
- W4319996475 cites W2753820606 @default.
- W4319996475 cites W2753865800 @default.
- W4319996475 cites W2760632211 @default.
- W4319996475 cites W2761264428 @default.
- W4319996475 cites W2763301477 @default.
- W4319996475 cites W2763450331 @default.
- W4319996475 cites W2774244034 @default.
- W4319996475 cites W2786618647 @default.
- W4319996475 cites W2788202095 @default.
- W4319996475 cites W2789862859 @default.
- W4319996475 cites W2794359703 @default.
- W4319996475 cites W2800368903 @default.
- W4319996475 cites W2804761573 @default.
- W4319996475 cites W2805876287 @default.
- W4319996475 cites W2808360995 @default.
- W4319996475 cites W2811038404 @default.
- W4319996475 cites W2811478086 @default.
- W4319996475 cites W2886565442 @default.
- W4319996475 cites W2887586579 @default.
- W4319996475 cites W2888086474 @default.
- W4319996475 cites W2891190453 @default.