Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319997115> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4319997115 abstract "Volumetric magnetic resonance (MR) image segmentation plays an important role in many clinical applications. Deep learning (DL) has recently achieved state-of-the-art or even human-level performance on various image segmentation tasks. Nevertheless, manually annotating volumetric MR images for DL model training is labor-exhaustive and time-consuming. In this work, we aim to train a semi-supervised and self-supervised collaborative learning framework for prostate 3D MR image segmentation while using extremely sparse annotations, for which the ground truth annotations are provided for just the central slice of each volumetric MR image. Specifically, semi-supervised learning and self-supervised learning methods are used to generate two independent sets of pseudo labels. These pseudo labels are then fused by Boolean operation to extract a more confident pseudo label set. The images with either manual or network self-generated labels are then employed to train a segmentation model for target volume extraction. Experimental results on a publicly available prostate MR image dataset demonstrate that, while requiring significantly less annotation effort, our framework generates very encouraging segmentation results. The proposed framework is very useful in clinical applications when training data with dense annotations are difficult to obtain." @default.
- W4319997115 created "2023-02-11" @default.
- W4319997115 creator A5005203991 @default.
- W4319997115 creator A5014979246 @default.
- W4319997115 creator A5022598327 @default.
- W4319997115 creator A5024833275 @default.
- W4319997115 creator A5055299862 @default.
- W4319997115 creator A5080527274 @default.
- W4319997115 creator A5091373580 @default.
- W4319997115 date "2022-11-16" @default.
- W4319997115 modified "2023-10-16" @default.
- W4319997115 title "Semi-Supervised and Self-Supervised Collaborative Learning for Prostate 3D MR Image Segmentation" @default.
- W4319997115 doi "https://doi.org/10.48550/arxiv.2211.08840" @default.
- W4319997115 hasPublicationYear "2022" @default.
- W4319997115 type Work @default.
- W4319997115 citedByCount "0" @default.
- W4319997115 crossrefType "posted-content" @default.
- W4319997115 hasAuthorship W4319997115A5005203991 @default.
- W4319997115 hasAuthorship W4319997115A5014979246 @default.
- W4319997115 hasAuthorship W4319997115A5022598327 @default.
- W4319997115 hasAuthorship W4319997115A5024833275 @default.
- W4319997115 hasAuthorship W4319997115A5055299862 @default.
- W4319997115 hasAuthorship W4319997115A5080527274 @default.
- W4319997115 hasAuthorship W4319997115A5091373580 @default.
- W4319997115 hasBestOaLocation W43199971151 @default.
- W4319997115 hasConcept C108583219 @default.
- W4319997115 hasConcept C115961682 @default.
- W4319997115 hasConcept C119857082 @default.
- W4319997115 hasConcept C124504099 @default.
- W4319997115 hasConcept C136389625 @default.
- W4319997115 hasConcept C146849305 @default.
- W4319997115 hasConcept C153180895 @default.
- W4319997115 hasConcept C154945302 @default.
- W4319997115 hasConcept C177264268 @default.
- W4319997115 hasConcept C199360897 @default.
- W4319997115 hasConcept C2776321320 @default.
- W4319997115 hasConcept C31972630 @default.
- W4319997115 hasConcept C41008148 @default.
- W4319997115 hasConcept C50644808 @default.
- W4319997115 hasConcept C58973888 @default.
- W4319997115 hasConcept C89600930 @default.
- W4319997115 hasConceptScore W4319997115C108583219 @default.
- W4319997115 hasConceptScore W4319997115C115961682 @default.
- W4319997115 hasConceptScore W4319997115C119857082 @default.
- W4319997115 hasConceptScore W4319997115C124504099 @default.
- W4319997115 hasConceptScore W4319997115C136389625 @default.
- W4319997115 hasConceptScore W4319997115C146849305 @default.
- W4319997115 hasConceptScore W4319997115C153180895 @default.
- W4319997115 hasConceptScore W4319997115C154945302 @default.
- W4319997115 hasConceptScore W4319997115C177264268 @default.
- W4319997115 hasConceptScore W4319997115C199360897 @default.
- W4319997115 hasConceptScore W4319997115C2776321320 @default.
- W4319997115 hasConceptScore W4319997115C31972630 @default.
- W4319997115 hasConceptScore W4319997115C41008148 @default.
- W4319997115 hasConceptScore W4319997115C50644808 @default.
- W4319997115 hasConceptScore W4319997115C58973888 @default.
- W4319997115 hasConceptScore W4319997115C89600930 @default.
- W4319997115 hasLocation W43199971151 @default.
- W4319997115 hasOpenAccess W4319997115 @default.
- W4319997115 hasPrimaryLocation W43199971151 @default.
- W4319997115 hasRelatedWork W1669643531 @default.
- W4319997115 hasRelatedWork W2122581818 @default.
- W4319997115 hasRelatedWork W2130151498 @default.
- W4319997115 hasRelatedWork W2784354871 @default.
- W4319997115 hasRelatedWork W2908875379 @default.
- W4319997115 hasRelatedWork W2947809439 @default.
- W4319997115 hasRelatedWork W2948658236 @default.
- W4319997115 hasRelatedWork W3027204089 @default.
- W4319997115 hasRelatedWork W3129604848 @default.
- W4319997115 hasRelatedWork W4210379404 @default.
- W4319997115 isParatext "false" @default.
- W4319997115 isRetracted "false" @default.
- W4319997115 workType "article" @default.