Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319998081> ?p ?o ?g. }
- W4319998081 endingPage "132" @default.
- W4319998081 startingPage "120" @default.
- W4319998081 abstract "Deep learning based solutions are being succesfully implemented for a wide variety of applications. Most notably, clinical use-cases have gained an increased interest and have been the main driver behind some of the cutting-edge data-driven algorithms proposed in the last years. For applications like sparse-view tomographic reconstructions, where the amount of measurement data is small in order to keep acquisition time short and radiation dose low, reduction of the streaking artifacts has prompted the development of data-driven denoising algorithms with the main goal of obtaining diagnostically viable images with only a subset of a full-scan data. We propose WNet, a data-driven dual-domain denoising model which contains a trainable reconstruction layer for sparse-view artifact denoising. Two encoder-decoder networks perform denoising in both sinogram- and reconstruction-domain simultaneously, while a third layer implementing the Filtered Backprojection algorithm is sandwiched between the first two and takes care of the reconstruction operation. We investigate the performance of the network on sparse-view chest CT scans, and we highlight the added benefit of having a trainable reconstruction layer over the more conventional fixed ones. We train and test our network on two clinically relevant datasets and we compare the obtained results with three different types of sparse-view CT denoising and reconstruction algorithms." @default.
- W4319998081 created "2023-02-11" @default.
- W4319998081 creator A5021375348 @default.
- W4319998081 creator A5022885146 @default.
- W4319998081 creator A5027400511 @default.
- W4319998081 creator A5064880589 @default.
- W4319998081 creator A5076544185 @default.
- W4319998081 creator A5076829996 @default.
- W4319998081 date "2023-01-01" @default.
- W4319998081 modified "2023-10-17" @default.
- W4319998081 title "WNet: A Data-Driven Dual-Domain Denoising Model for Sparse-View Computed Tomography With a Trainable Reconstruction Layer" @default.
- W4319998081 cites W1972150100 @default.
- W4319998081 cites W1976442528 @default.
- W4319998081 cites W2003550491 @default.
- W4319998081 cites W2005089986 @default.
- W4319998081 cites W2007522854 @default.
- W4319998081 cites W2012785882 @default.
- W4319998081 cites W2020510568 @default.
- W4319998081 cites W2035895659 @default.
- W4319998081 cites W2055483062 @default.
- W4319998081 cites W2071847032 @default.
- W4319998081 cites W2074077431 @default.
- W4319998081 cites W2133665775 @default.
- W4319998081 cites W2574952845 @default.
- W4319998081 cites W2743780012 @default.
- W4319998081 cites W2794977498 @default.
- W4319998081 cites W2796256498 @default.
- W4319998081 cites W2803086176 @default.
- W4319998081 cites W2890404105 @default.
- W4319998081 cites W2895115770 @default.
- W4319998081 cites W2899314786 @default.
- W4319998081 cites W2930377639 @default.
- W4319998081 cites W2947964926 @default.
- W4319998081 cites W2963392702 @default.
- W4319998081 cites W2963891322 @default.
- W4319998081 cites W2964118901 @default.
- W4319998081 cites W2964203396 @default.
- W4319998081 cites W2982486437 @default.
- W4319998081 cites W3011791673 @default.
- W4319998081 cites W3012479996 @default.
- W4319998081 cites W3046301294 @default.
- W4319998081 cites W3069245681 @default.
- W4319998081 cites W3104117055 @default.
- W4319998081 cites W3110642654 @default.
- W4319998081 cites W3111081528 @default.
- W4319998081 cites W3125908253 @default.
- W4319998081 cites W3138542141 @default.
- W4319998081 cites W3157089313 @default.
- W4319998081 cites W3163232091 @default.
- W4319998081 cites W3163309171 @default.
- W4319998081 cites W319611471 @default.
- W4319998081 cites W4205881135 @default.
- W4319998081 cites W4285489784 @default.
- W4319998081 cites W4296965639 @default.
- W4319998081 doi "https://doi.org/10.1109/tci.2023.3240078" @default.
- W4319998081 hasPublicationYear "2023" @default.
- W4319998081 type Work @default.
- W4319998081 citedByCount "3" @default.
- W4319998081 countsByYear W43199980812023 @default.
- W4319998081 crossrefType "journal-article" @default.
- W4319998081 hasAuthorship W4319998081A5021375348 @default.
- W4319998081 hasAuthorship W4319998081A5022885146 @default.
- W4319998081 hasAuthorship W4319998081A5027400511 @default.
- W4319998081 hasAuthorship W4319998081A5064880589 @default.
- W4319998081 hasAuthorship W4319998081A5076544185 @default.
- W4319998081 hasAuthorship W4319998081A5076829996 @default.
- W4319998081 hasBestOaLocation W43199980812 @default.
- W4319998081 hasConcept C141379421 @default.
- W4319998081 hasConcept C153180895 @default.
- W4319998081 hasConcept C154945302 @default.
- W4319998081 hasConcept C163294075 @default.
- W4319998081 hasConcept C2779898584 @default.
- W4319998081 hasConcept C31972630 @default.
- W4319998081 hasConcept C41008148 @default.
- W4319998081 hasConcept C97742081 @default.
- W4319998081 hasConceptScore W4319998081C141379421 @default.
- W4319998081 hasConceptScore W4319998081C153180895 @default.
- W4319998081 hasConceptScore W4319998081C154945302 @default.
- W4319998081 hasConceptScore W4319998081C163294075 @default.
- W4319998081 hasConceptScore W4319998081C2779898584 @default.
- W4319998081 hasConceptScore W4319998081C31972630 @default.
- W4319998081 hasConceptScore W4319998081C41008148 @default.
- W4319998081 hasConceptScore W4319998081C97742081 @default.
- W4319998081 hasFunder F4320320879 @default.
- W4319998081 hasFunder F4320321114 @default.
- W4319998081 hasLocation W43199980811 @default.
- W4319998081 hasLocation W43199980812 @default.
- W4319998081 hasOpenAccess W4319998081 @default.
- W4319998081 hasPrimaryLocation W43199980811 @default.
- W4319998081 hasRelatedWork W2081458845 @default.
- W4319998081 hasRelatedWork W2093747323 @default.
- W4319998081 hasRelatedWork W2143438001 @default.
- W4319998081 hasRelatedWork W2483420468 @default.
- W4319998081 hasRelatedWork W2517246325 @default.
- W4319998081 hasRelatedWork W2950930023 @default.
- W4319998081 hasRelatedWork W3011087369 @default.
- W4319998081 hasRelatedWork W4283812785 @default.
- W4319998081 hasRelatedWork W4319998081 @default.