Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319999621> ?p ?o ?g. }
- W4319999621 endingPage "106584" @default.
- W4319999621 startingPage "106584" @default.
- W4319999621 abstract "Drug combination therapy is a promising strategy to enhance the desired therapeutic effect, while reducing side effects. High-throughput pairwise drug combination screening is a commonly used method for discovering favorable drug interactions, but is time-consuming and costly. Here, we investigate the use of reaction network topology-guided design of combination therapy as a predictive in silico drug-drug interaction screening approach. We focused on three-node enzymatic networks, with general Michaelis–Menten kinetics. The results revealed that drug-drug interactions critically depend on the choice of target arrangement in a given topology, the nature of the drug, and the desired level of change in the network output. The results showed a negative correlation between antagonistic interactions and the dosage of drugs. Overall, the negative feedback loops showed the highest synergistic interactions (the lowest average combination index) and, intriguingly, required the highest drug doses compared to other topologies under the same condition." @default.
- W4319999621 created "2023-02-11" @default.
- W4319999621 creator A5006619393 @default.
- W4319999621 creator A5029816593 @default.
- W4319999621 creator A5038245356 @default.
- W4319999621 creator A5039682482 @default.
- W4319999621 creator A5066751186 @default.
- W4319999621 creator A5067811551 @default.
- W4319999621 date "2023-03-01" @default.
- W4319999621 modified "2023-10-15" @default.
- W4319999621 title "Biochemical reaction network topology defines dose-dependent Drug–Drug interactions" @default.
- W4319999621 cites W1975455559 @default.
- W4319999621 cites W1980181290 @default.
- W4319999621 cites W2003496625 @default.
- W4319999621 cites W2049020763 @default.
- W4319999621 cites W2052676471 @default.
- W4319999621 cites W2060737851 @default.
- W4319999621 cites W2096439168 @default.
- W4319999621 cites W2100887597 @default.
- W4319999621 cites W2113551867 @default.
- W4319999621 cites W2115076532 @default.
- W4319999621 cites W2116877707 @default.
- W4319999621 cites W2128074664 @default.
- W4319999621 cites W2129662907 @default.
- W4319999621 cites W2148841924 @default.
- W4319999621 cites W2157144029 @default.
- W4319999621 cites W2276747534 @default.
- W4319999621 cites W2277426780 @default.
- W4319999621 cites W2518086895 @default.
- W4319999621 cites W2788684488 @default.
- W4319999621 cites W2798017727 @default.
- W4319999621 cites W2888310674 @default.
- W4319999621 cites W2940601839 @default.
- W4319999621 cites W2982555156 @default.
- W4319999621 cites W3104818099 @default.
- W4319999621 cites W4206247747 @default.
- W4319999621 cites W4206722399 @default.
- W4319999621 cites W4210920279 @default.
- W4319999621 cites W4211219865 @default.
- W4319999621 cites W4280639694 @default.
- W4319999621 cites W4293492272 @default.
- W4319999621 cites W868534065 @default.
- W4319999621 doi "https://doi.org/10.1016/j.compbiomed.2023.106584" @default.
- W4319999621 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36805215" @default.
- W4319999621 hasPublicationYear "2023" @default.
- W4319999621 type Work @default.
- W4319999621 citedByCount "2" @default.
- W4319999621 countsByYear W43199996212023 @default.
- W4319999621 crossrefType "journal-article" @default.
- W4319999621 hasAuthorship W4319999621A5006619393 @default.
- W4319999621 hasAuthorship W4319999621A5029816593 @default.
- W4319999621 hasAuthorship W4319999621A5038245356 @default.
- W4319999621 hasAuthorship W4319999621A5039682482 @default.
- W4319999621 hasAuthorship W4319999621A5066751186 @default.
- W4319999621 hasAuthorship W4319999621A5067811551 @default.
- W4319999621 hasBestOaLocation W43199996211 @default.
- W4319999621 hasConcept C104317684 @default.
- W4319999621 hasConcept C114614502 @default.
- W4319999621 hasConcept C121332964 @default.
- W4319999621 hasConcept C154945302 @default.
- W4319999621 hasConcept C184720557 @default.
- W4319999621 hasConcept C184898388 @default.
- W4319999621 hasConcept C185592680 @default.
- W4319999621 hasConcept C199845137 @default.
- W4319999621 hasConcept C2775905019 @default.
- W4319999621 hasConcept C2780035454 @default.
- W4319999621 hasConcept C31258907 @default.
- W4319999621 hasConcept C33923547 @default.
- W4319999621 hasConcept C41008148 @default.
- W4319999621 hasConcept C55493867 @default.
- W4319999621 hasConcept C62520636 @default.
- W4319999621 hasConcept C62611344 @default.
- W4319999621 hasConcept C70721500 @default.
- W4319999621 hasConcept C71924100 @default.
- W4319999621 hasConcept C86803240 @default.
- W4319999621 hasConcept C97320921 @default.
- W4319999621 hasConcept C98274493 @default.
- W4319999621 hasConceptScore W4319999621C104317684 @default.
- W4319999621 hasConceptScore W4319999621C114614502 @default.
- W4319999621 hasConceptScore W4319999621C121332964 @default.
- W4319999621 hasConceptScore W4319999621C154945302 @default.
- W4319999621 hasConceptScore W4319999621C184720557 @default.
- W4319999621 hasConceptScore W4319999621C184898388 @default.
- W4319999621 hasConceptScore W4319999621C185592680 @default.
- W4319999621 hasConceptScore W4319999621C199845137 @default.
- W4319999621 hasConceptScore W4319999621C2775905019 @default.
- W4319999621 hasConceptScore W4319999621C2780035454 @default.
- W4319999621 hasConceptScore W4319999621C31258907 @default.
- W4319999621 hasConceptScore W4319999621C33923547 @default.
- W4319999621 hasConceptScore W4319999621C41008148 @default.
- W4319999621 hasConceptScore W4319999621C55493867 @default.
- W4319999621 hasConceptScore W4319999621C62520636 @default.
- W4319999621 hasConceptScore W4319999621C62611344 @default.
- W4319999621 hasConceptScore W4319999621C70721500 @default.
- W4319999621 hasConceptScore W4319999621C71924100 @default.
- W4319999621 hasConceptScore W4319999621C86803240 @default.
- W4319999621 hasConceptScore W4319999621C97320921 @default.
- W4319999621 hasConceptScore W4319999621C98274493 @default.