Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320001322> ?p ?o ?g. }
- W4320001322 endingPage "108" @default.
- W4320001322 startingPage "87" @default.
- W4320001322 abstract "Electrocardiogram (ECG) is a vital tool to identify cardiac disorders effectively in the medical field. However, manual detection of crucial episodes in ambulatory ECG is very difficult. Therefore, an automatic diagnosis system is needed to detect the beats automatically. High-quality ECG signals are required to classify ECG beats properly but in real time, acquired ECG signals are severely affected by several noises due to wearable sensors. In this chapter, a customized deep learning technique is proposed for ECG beat detection. Two steps have been followed in this work: (i) preprocessing and (ii) classification. In the preprocessing step, the ECG signal is segmented into individual beats based on the location of the R-peak. Then, intrinsic mode functions (IMFs) are decomposed from the individual ECG beats using the empirical mode decomposition (EMD) technique. Significant IMFs are selected to remove the high-frequency noise from the ECG signal. Finally, the resulting ECG beats are utilized for ECG beat detection with the help of a deep learning-based custom model in the classification stage. Six models are utilized in the proposed deep learning architecture with different strides in convolutional layers that extract significant features from the input. Three different inputs are fed to the proposed model: the complete signal (−128 to +128), left (−128 to 0), and right (0 to +128) portions from the R-peak. The proposed model can extract different in-depth features using these three inputs. Standard publicly available Massachusetts Institute of Technology-Beth Israel Hospital cardiac arrhythmia database is used to check the ability of the EMD-based deep learning technique. In this work, five different ECG beats are detected as suggested by the Association for the Advancement of Medical Instrumentation. The experimental results show that the proposed method provides better performance compared to the state-of-the-art techniques." @default.
- W4320001322 created "2023-02-11" @default.
- W4320001322 creator A5001288599 @default.
- W4320001322 creator A5025574554 @default.
- W4320001322 creator A5031738703 @default.
- W4320001322 date "2023-01-01" @default.
- W4320001322 modified "2023-09-26" @default.
- W4320001322 title "Patient-specific ECG beat classification using EMD and deep learning-based technique" @default.
- W4320001322 cites W1964897957 @default.
- W4320001322 cites W1983903026 @default.
- W4320001322 cites W1985075488 @default.
- W4320001322 cites W1986295895 @default.
- W4320001322 cites W1988183757 @default.
- W4320001322 cites W2007221293 @default.
- W4320001322 cites W2012297890 @default.
- W4320001322 cites W2020571458 @default.
- W4320001322 cites W2035381272 @default.
- W4320001322 cites W2043967021 @default.
- W4320001322 cites W2046040164 @default.
- W4320001322 cites W2047188832 @default.
- W4320001322 cites W2053097865 @default.
- W4320001322 cites W2058073580 @default.
- W4320001322 cites W2095409369 @default.
- W4320001322 cites W2101166342 @default.
- W4320001322 cites W2109063128 @default.
- W4320001322 cites W2117736816 @default.
- W4320001322 cites W2123819164 @default.
- W4320001322 cites W2132300419 @default.
- W4320001322 cites W2139821650 @default.
- W4320001322 cites W2156651377 @default.
- W4320001322 cites W2159980404 @default.
- W4320001322 cites W2162693370 @default.
- W4320001322 cites W2167274237 @default.
- W4320001322 cites W2291961022 @default.
- W4320001322 cites W2336675008 @default.
- W4320001322 cites W2524020726 @default.
- W4320001322 cites W2755507768 @default.
- W4320001322 cites W2767076830 @default.
- W4320001322 cites W2770536576 @default.
- W4320001322 cites W2806806521 @default.
- W4320001322 cites W2907615080 @default.
- W4320001322 cites W2942497026 @default.
- W4320001322 cites W2945801048 @default.
- W4320001322 cites W2971641952 @default.
- W4320001322 cites W2989746651 @default.
- W4320001322 cites W3008785957 @default.
- W4320001322 cites W3009545797 @default.
- W4320001322 cites W3033937217 @default.
- W4320001322 cites W3082849008 @default.
- W4320001322 cites W3083227401 @default.
- W4320001322 cites W3126772664 @default.
- W4320001322 doi "https://doi.org/10.1016/b978-0-323-85955-4.00007-7" @default.
- W4320001322 hasPublicationYear "2023" @default.
- W4320001322 type Work @default.
- W4320001322 citedByCount "2" @default.
- W4320001322 countsByYear W43200013222022 @default.
- W4320001322 countsByYear W43200013222023 @default.
- W4320001322 crossrefType "book-chapter" @default.
- W4320001322 hasAuthorship W4320001322A5001288599 @default.
- W4320001322 hasAuthorship W4320001322A5025574554 @default.
- W4320001322 hasAuthorship W4320001322A5031738703 @default.
- W4320001322 hasConcept C106131492 @default.
- W4320001322 hasConcept C108583219 @default.
- W4320001322 hasConcept C121332964 @default.
- W4320001322 hasConcept C153180895 @default.
- W4320001322 hasConcept C154945302 @default.
- W4320001322 hasConcept C189809214 @default.
- W4320001322 hasConcept C24890656 @default.
- W4320001322 hasConcept C25570617 @default.
- W4320001322 hasConcept C28490314 @default.
- W4320001322 hasConcept C31972630 @default.
- W4320001322 hasConcept C34736171 @default.
- W4320001322 hasConcept C41008148 @default.
- W4320001322 hasConceptScore W4320001322C106131492 @default.
- W4320001322 hasConceptScore W4320001322C108583219 @default.
- W4320001322 hasConceptScore W4320001322C121332964 @default.
- W4320001322 hasConceptScore W4320001322C153180895 @default.
- W4320001322 hasConceptScore W4320001322C154945302 @default.
- W4320001322 hasConceptScore W4320001322C189809214 @default.
- W4320001322 hasConceptScore W4320001322C24890656 @default.
- W4320001322 hasConceptScore W4320001322C25570617 @default.
- W4320001322 hasConceptScore W4320001322C28490314 @default.
- W4320001322 hasConceptScore W4320001322C31972630 @default.
- W4320001322 hasConceptScore W4320001322C34736171 @default.
- W4320001322 hasConceptScore W4320001322C41008148 @default.
- W4320001322 hasLocation W43200013221 @default.
- W4320001322 hasOpenAccess W4320001322 @default.
- W4320001322 hasPrimaryLocation W43200013221 @default.
- W4320001322 hasRelatedWork W1502614025 @default.
- W4320001322 hasRelatedWork W2066259560 @default.
- W4320001322 hasRelatedWork W2126100045 @default.
- W4320001322 hasRelatedWork W2262783296 @default.
- W4320001322 hasRelatedWork W2380927352 @default.
- W4320001322 hasRelatedWork W2391959412 @default.
- W4320001322 hasRelatedWork W2728578317 @default.
- W4320001322 hasRelatedWork W2773120646 @default.
- W4320001322 hasRelatedWork W4211209597 @default.
- W4320001322 hasRelatedWork W4313289316 @default.