Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320001462> ?p ?o ?g. }
- W4320001462 endingPage "242" @default.
- W4320001462 startingPage "205" @default.
- W4320001462 abstract "This chapter mainly addresses the topic of deep learning methods applied in the field of neural signal processing. We started our discussion with basic neural network frameworks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid networks frameworks, an important mechanism attention is also introduced for its breakthrough effect for machine learning tasks. Then we discussed about an emerging subfield graph neural network (GNN), which has attracted interests of researchers in communities, because models based on graphs are expressive at learning both structural and attributes at the same time, meanwhile in reality many data are naturally or can be purposely organized in the format of graphs. In terms of neural signals, it is especially appropriate to adopt GNNs for the analysis of brain connectomes. We discussed various types of GNNs based on their different ways of information aggregation approaches, namely convolutional, attention-based, and message passing flavors. Applications of GNNs on neural data are still in its early stage but several attempts have been made and paved a way as we exemplified. Despite the effectiveness of deep learning compared with traditional machine learning methods, it also suffers from interpretability and data greediness. For data feeding into the models are represented through hidden layers, what each layer means remains obscure. Meanwhile, large quantities of data (especially labelled ones) are needed for training a successful model which is usually not the case in domain specific neural data. In the future, efforts are expected to design deep learning, particularly graph-based deep learning methods to improve the current neuroscientific and engineering research." @default.
- W4320001462 created "2023-02-11" @default.
- W4320001462 creator A5003360183 @default.
- W4320001462 creator A5011667562 @default.
- W4320001462 creator A5030525432 @default.
- W4320001462 date "2023-01-01" @default.
- W4320001462 modified "2023-10-16" @default.
- W4320001462 title "Deep learning methods for analysis of neural signals: From conventional neural network to graph neural network" @default.
- W4320001462 cites W1510317613 @default.
- W4320001462 cites W1995341919 @default.
- W4320001462 cites W2064675550 @default.
- W4320001462 cites W2110485445 @default.
- W4320001462 cites W2112796928 @default.
- W4320001462 cites W2116360511 @default.
- W4320001462 cites W2128084896 @default.
- W4320001462 cites W2131774270 @default.
- W4320001462 cites W2147800946 @default.
- W4320001462 cites W2150355110 @default.
- W4320001462 cites W2238108400 @default.
- W4320001462 cites W2551178936 @default.
- W4320001462 cites W2557301950 @default.
- W4320001462 cites W2566079294 @default.
- W4320001462 cites W2610034660 @default.
- W4320001462 cites W2611159092 @default.
- W4320001462 cites W2618454567 @default.
- W4320001462 cites W2618530766 @default.
- W4320001462 cites W2741907166 @default.
- W4320001462 cites W2759483166 @default.
- W4320001462 cites W2762517398 @default.
- W4320001462 cites W2773359360 @default.
- W4320001462 cites W2790486743 @default.
- W4320001462 cites W2792489592 @default.
- W4320001462 cites W2799610518 @default.
- W4320001462 cites W2804824909 @default.
- W4320001462 cites W2805033630 @default.
- W4320001462 cites W2874390489 @default.
- W4320001462 cites W2885516027 @default.
- W4320001462 cites W2915893085 @default.
- W4320001462 cites W2919115771 @default.
- W4320001462 cites W2946344027 @default.
- W4320001462 cites W2949547136 @default.
- W4320001462 cites W2950023118 @default.
- W4320001462 cites W2958750483 @default.
- W4320001462 cites W2963168174 @default.
- W4320001462 cites W2963355311 @default.
- W4320001462 cites W2963919481 @default.
- W4320001462 cites W2964267916 @default.
- W4320001462 cites W2976017519 @default.
- W4320001462 cites W3000231660 @default.
- W4320001462 cites W3001525933 @default.
- W4320001462 cites W3013691153 @default.
- W4320001462 cites W3015920691 @default.
- W4320001462 cites W3023283343 @default.
- W4320001462 cites W3024560045 @default.
- W4320001462 cites W3083221507 @default.
- W4320001462 cites W3083695772 @default.
- W4320001462 cites W3084388598 @default.
- W4320001462 cites W3090080743 @default.
- W4320001462 cites W3092100795 @default.
- W4320001462 doi "https://doi.org/10.1016/b978-0-323-85955-4.00010-7" @default.
- W4320001462 hasPublicationYear "2023" @default.
- W4320001462 type Work @default.
- W4320001462 citedByCount "0" @default.
- W4320001462 crossrefType "book-chapter" @default.
- W4320001462 hasAuthorship W4320001462A5003360183 @default.
- W4320001462 hasAuthorship W4320001462A5011667562 @default.
- W4320001462 hasAuthorship W4320001462A5030525432 @default.
- W4320001462 hasConcept C108583219 @default.
- W4320001462 hasConcept C119857082 @default.
- W4320001462 hasConcept C132525143 @default.
- W4320001462 hasConcept C147168706 @default.
- W4320001462 hasConcept C154945302 @default.
- W4320001462 hasConcept C2781067378 @default.
- W4320001462 hasConcept C41008148 @default.
- W4320001462 hasConcept C50644808 @default.
- W4320001462 hasConcept C80444323 @default.
- W4320001462 hasConcept C81363708 @default.
- W4320001462 hasConceptScore W4320001462C108583219 @default.
- W4320001462 hasConceptScore W4320001462C119857082 @default.
- W4320001462 hasConceptScore W4320001462C132525143 @default.
- W4320001462 hasConceptScore W4320001462C147168706 @default.
- W4320001462 hasConceptScore W4320001462C154945302 @default.
- W4320001462 hasConceptScore W4320001462C2781067378 @default.
- W4320001462 hasConceptScore W4320001462C41008148 @default.
- W4320001462 hasConceptScore W4320001462C50644808 @default.
- W4320001462 hasConceptScore W4320001462C80444323 @default.
- W4320001462 hasConceptScore W4320001462C81363708 @default.
- W4320001462 hasLocation W43200014621 @default.
- W4320001462 hasOpenAccess W4320001462 @default.
- W4320001462 hasPrimaryLocation W43200014621 @default.
- W4320001462 hasRelatedWork W2731899572 @default.
- W4320001462 hasRelatedWork W3006943036 @default.
- W4320001462 hasRelatedWork W3129898729 @default.
- W4320001462 hasRelatedWork W3133861977 @default.
- W4320001462 hasRelatedWork W4200173597 @default.
- W4320001462 hasRelatedWork W4299487748 @default.
- W4320001462 hasRelatedWork W4310880831 @default.
- W4320001462 hasRelatedWork W4312417841 @default.