Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320002767> ?p ?o ?g. }
- W4320002767 endingPage "13279" @default.
- W4320002767 startingPage "13257" @default.
- W4320002767 abstract "In recent decades, there has been a constant demand for faster, longer, and safer railway networks. This also brings challenges for condition monitoring systems in modern railway vehicles. More specifically, critical parts of railway vehicles like wheels degrade over time due to various operational and environmental reasons. Different dynamic effects such as skidding/sliding over the track and the presence of contamination between wheel-rail cause various wheel defects. Faulty wheels ultimately lead to the derailment of railway vehicles. To avoid worst situations like railway derailments, various research has been conducted for developing efficient condition monitoring systems for railway wheels. In addition, there have been some commercial condition monitoring products that can be deployed with railway vehicles. These systems incorporate various sensors such as strain gauges and vision sensors to collect data for diagnosis and prognosis. Various methods have been explored but yet there is a broad research gap in terms of developing advanced onboard condition monitoring systems. With the progress in technology, advanced systems with Machine Learning/Deep Learning methods can provide more efficient and robust condition monitoring of dynamic railway systems. Considering the need for advancement in condition monitoring systems for railway vehicles, a comprehensive review of existing condition monitoring systems for railway wheels is conducted in this paper. The review is aimed at understanding the feasibility and potential of new methods for modern railways. This paper provides a detailed overview of studies on the existing wayside systems and reports their advantages and disadvantages concerning its recently emerging counterpart on-board monitoring systems. Data acquisition systems and analysis methods are critically reviewed which could assist in developing more efficient and reliable condition monitoring systems for railway wheels. This article also reviews the current progress of wayside systems and their limitations. The article is targeted at the researchers and engineers working in this domain, who can pave the way for developing advanced and cost-effective condition monitoring systems for railway wheels using modern technologies." @default.
- W4320002767 created "2023-02-11" @default.
- W4320002767 creator A5019516720 @default.
- W4320002767 creator A5030390514 @default.
- W4320002767 creator A5031581049 @default.
- W4320002767 creator A5031742506 @default.
- W4320002767 creator A5034155059 @default.
- W4320002767 creator A5043587502 @default.
- W4320002767 creator A5046339751 @default.
- W4320002767 creator A5068069860 @default.
- W4320002767 creator A5074343109 @default.
- W4320002767 date "2023-01-01" @default.
- W4320002767 modified "2023-09-30" @default.
- W4320002767 title "State-of-the-Art Wayside Condition Monitoring Systems for Railway Wheels: A Comprehensive Review" @default.
- W4320002767 cites W2003484186 @default.
- W4320002767 cites W2003658172 @default.
- W4320002767 cites W2009713401 @default.
- W4320002767 cites W2019723507 @default.
- W4320002767 cites W2037325790 @default.
- W4320002767 cites W2088023513 @default.
- W4320002767 cites W2136768479 @default.
- W4320002767 cites W2323007127 @default.
- W4320002767 cites W2341147505 @default.
- W4320002767 cites W2461445497 @default.
- W4320002767 cites W2468452076 @default.
- W4320002767 cites W2549910062 @default.
- W4320002767 cites W2612949981 @default.
- W4320002767 cites W2744245146 @default.
- W4320002767 cites W2896000943 @default.
- W4320002767 cites W2908067618 @default.
- W4320002767 cites W2910135575 @default.
- W4320002767 cites W2914167282 @default.
- W4320002767 cites W2944851425 @default.
- W4320002767 cites W2958397839 @default.
- W4320002767 cites W2964933023 @default.
- W4320002767 cites W2969858289 @default.
- W4320002767 cites W2972322708 @default.
- W4320002767 cites W2975154046 @default.
- W4320002767 cites W3004908459 @default.
- W4320002767 cites W3005537099 @default.
- W4320002767 cites W3007002526 @default.
- W4320002767 cites W3035750201 @default.
- W4320002767 cites W3037757660 @default.
- W4320002767 cites W3037872117 @default.
- W4320002767 cites W3081125651 @default.
- W4320002767 cites W3082224645 @default.
- W4320002767 cites W3089543595 @default.
- W4320002767 cites W3111669599 @default.
- W4320002767 cites W3117556047 @default.
- W4320002767 cites W3125665527 @default.
- W4320002767 cites W3142432989 @default.
- W4320002767 cites W3159514420 @default.
- W4320002767 cites W3159638179 @default.
- W4320002767 cites W3165670597 @default.
- W4320002767 cites W3176512359 @default.
- W4320002767 cites W3210387590 @default.
- W4320002767 cites W4200545777 @default.
- W4320002767 cites W4213127506 @default.
- W4320002767 cites W4214832227 @default.
- W4320002767 cites W4313123522 @default.
- W4320002767 doi "https://doi.org/10.1109/access.2023.3240167" @default.
- W4320002767 hasPublicationYear "2023" @default.
- W4320002767 type Work @default.
- W4320002767 citedByCount "2" @default.
- W4320002767 countsByYear W43200027672023 @default.
- W4320002767 crossrefType "journal-article" @default.
- W4320002767 hasAuthorship W4320002767A5019516720 @default.
- W4320002767 hasAuthorship W4320002767A5030390514 @default.
- W4320002767 hasAuthorship W4320002767A5031581049 @default.
- W4320002767 hasAuthorship W4320002767A5031742506 @default.
- W4320002767 hasAuthorship W4320002767A5034155059 @default.
- W4320002767 hasAuthorship W4320002767A5043587502 @default.
- W4320002767 hasAuthorship W4320002767A5046339751 @default.
- W4320002767 hasAuthorship W4320002767A5068069860 @default.
- W4320002767 hasAuthorship W4320002767A5074343109 @default.
- W4320002767 hasBestOaLocation W43200027671 @default.
- W4320002767 hasConcept C112930515 @default.
- W4320002767 hasConcept C119599485 @default.
- W4320002767 hasConcept C127413603 @default.
- W4320002767 hasConcept C171146098 @default.
- W4320002767 hasConcept C197090313 @default.
- W4320002767 hasConcept C22212356 @default.
- W4320002767 hasConcept C2775846686 @default.
- W4320002767 hasConcept C2776654903 @default.
- W4320002767 hasConcept C2987165512 @default.
- W4320002767 hasConcept C38652104 @default.
- W4320002767 hasConcept C41008148 @default.
- W4320002767 hasConcept C71924100 @default.
- W4320002767 hasConcept C78519656 @default.
- W4320002767 hasConcept C89992363 @default.
- W4320002767 hasConceptScore W4320002767C112930515 @default.
- W4320002767 hasConceptScore W4320002767C119599485 @default.
- W4320002767 hasConceptScore W4320002767C127413603 @default.
- W4320002767 hasConceptScore W4320002767C171146098 @default.
- W4320002767 hasConceptScore W4320002767C197090313 @default.
- W4320002767 hasConceptScore W4320002767C22212356 @default.
- W4320002767 hasConceptScore W4320002767C2775846686 @default.
- W4320002767 hasConceptScore W4320002767C2776654903 @default.