Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320002904> ?p ?o ?g. }
- W4320002904 endingPage "10789" @default.
- W4320002904 startingPage "10778" @default.
- W4320002904 abstract "Specific emitter identification (SEI) plays an increasingly crucial and potential role in both military and civilian scenarios. It refers to a process to discriminate individual emitters from each other by analyzing extracted characteristics from given radio signals. Deep learning (DL) and deep neural networks (DNNs) can learn the hidden features of data and build the classifier automatically for decision making, which have been widely used in the SEI research. Considering the insufficiently labeled training samples and large-unlabeled training samples, the semi-supervised learning-based SEI (SS-SEI) methods have been proposed. However, there are few SS-SEI methods focusing on extracting the discriminative and generalized semantic features of radio signals. In this article, we propose an SS-SEI method using metric-adversarial training (MAT). Specifically, pseudo labels are innovatively introduced into metric learning to enable semi-supervised metric learning (SSML), and an objective function alternatively regularized by SSML and virtual adversarial training (VAT) is designed to extract discriminative and generalized semantic features of radio signals. The proposed MAT-based SS-SEI method is evaluated on an open-source large-scale real-world automatic-dependent surveillance–broadcast (ADS-B) data set and Wi-Fi data set and is compared with the state-of-the-art methods. The simulation results show that the proposed method achieves better identification performance than existing state-of-the-art methods. Specifically, when the ratio of the number of labeled training samples to the number of all training samples is 10%, the identification accuracy is 84.80% under the ADS-B data set and 80.70% under the Wi-Fi data set. Our code can be downloaded from <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/lovelymimola/MAT-based-SS-SEI</uri> ." @default.
- W4320002904 created "2023-02-11" @default.
- W4320002904 creator A5004090729 @default.
- W4320002904 creator A5007247379 @default.
- W4320002904 creator A5011281064 @default.
- W4320002904 creator A5026448728 @default.
- W4320002904 creator A5027367677 @default.
- W4320002904 creator A5036456471 @default.
- W4320002904 creator A5088090343 @default.
- W4320002904 date "2023-06-15" @default.
- W4320002904 modified "2023-10-05" @default.
- W4320002904 title "Semi-Supervised Specific Emitter Identification Method Using Metric-Adversarial Training" @default.
- W4320002904 cites W1906707745 @default.
- W4320002904 cites W1917532482 @default.
- W4320002904 cites W1972973610 @default.
- W4320002904 cites W1980035202 @default.
- W4320002904 cites W2111406701 @default.
- W4320002904 cites W2130671348 @default.
- W4320002904 cites W2164162938 @default.
- W4320002904 cites W2520774990 @default.
- W4320002904 cites W2791256362 @default.
- W4320002904 cites W2891054065 @default.
- W4320002904 cites W2903139904 @default.
- W4320002904 cites W2919530665 @default.
- W4320002904 cites W2938144699 @default.
- W4320002904 cites W2943484928 @default.
- W4320002904 cites W2945217752 @default.
- W4320002904 cites W2954992643 @default.
- W4320002904 cites W2964159205 @default.
- W4320002904 cites W2993809815 @default.
- W4320002904 cites W2996730556 @default.
- W4320002904 cites W3001393655 @default.
- W4320002904 cites W3004340854 @default.
- W4320002904 cites W3016146955 @default.
- W4320002904 cites W3023365694 @default.
- W4320002904 cites W3034202663 @default.
- W4320002904 cites W3034303554 @default.
- W4320002904 cites W3048385670 @default.
- W4320002904 cites W3088383832 @default.
- W4320002904 cites W3093222659 @default.
- W4320002904 cites W3095531713 @default.
- W4320002904 cites W3099206234 @default.
- W4320002904 cites W3128103512 @default.
- W4320002904 cites W3128456419 @default.
- W4320002904 cites W3138656191 @default.
- W4320002904 cites W3170485195 @default.
- W4320002904 cites W3176469059 @default.
- W4320002904 cites W3179847226 @default.
- W4320002904 cites W3180562345 @default.
- W4320002904 cites W3181667991 @default.
- W4320002904 cites W3194740358 @default.
- W4320002904 cites W3205903617 @default.
- W4320002904 cites W3205971195 @default.
- W4320002904 cites W4205184731 @default.
- W4320002904 cites W4205273399 @default.
- W4320002904 cites W4205390258 @default.
- W4320002904 cites W4254182148 @default.
- W4320002904 cites W4280643872 @default.
- W4320002904 cites W4285171423 @default.
- W4320002904 cites W4285179867 @default.
- W4320002904 cites W4289821916 @default.
- W4320002904 cites W4301019359 @default.
- W4320002904 cites W4312804044 @default.
- W4320002904 doi "https://doi.org/10.1109/jiot.2023.3240242" @default.
- W4320002904 hasPublicationYear "2023" @default.
- W4320002904 type Work @default.
- W4320002904 citedByCount "7" @default.
- W4320002904 countsByYear W43200029042023 @default.
- W4320002904 crossrefType "journal-article" @default.
- W4320002904 hasAuthorship W4320002904A5004090729 @default.
- W4320002904 hasAuthorship W4320002904A5007247379 @default.
- W4320002904 hasAuthorship W4320002904A5011281064 @default.
- W4320002904 hasAuthorship W4320002904A5026448728 @default.
- W4320002904 hasAuthorship W4320002904A5027367677 @default.
- W4320002904 hasAuthorship W4320002904A5036456471 @default.
- W4320002904 hasAuthorship W4320002904A5088090343 @default.
- W4320002904 hasBestOaLocation W43200029042 @default.
- W4320002904 hasConcept C116834253 @default.
- W4320002904 hasConcept C119857082 @default.
- W4320002904 hasConcept C121332964 @default.
- W4320002904 hasConcept C127413603 @default.
- W4320002904 hasConcept C153180895 @default.
- W4320002904 hasConcept C153294291 @default.
- W4320002904 hasConcept C154945302 @default.
- W4320002904 hasConcept C176217482 @default.
- W4320002904 hasConcept C21547014 @default.
- W4320002904 hasConcept C2777211547 @default.
- W4320002904 hasConcept C37736160 @default.
- W4320002904 hasConcept C41008148 @default.
- W4320002904 hasConcept C59822182 @default.
- W4320002904 hasConcept C86803240 @default.
- W4320002904 hasConceptScore W4320002904C116834253 @default.
- W4320002904 hasConceptScore W4320002904C119857082 @default.
- W4320002904 hasConceptScore W4320002904C121332964 @default.
- W4320002904 hasConceptScore W4320002904C127413603 @default.
- W4320002904 hasConceptScore W4320002904C153180895 @default.
- W4320002904 hasConceptScore W4320002904C153294291 @default.
- W4320002904 hasConceptScore W4320002904C154945302 @default.