Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320021636> ?p ?o ?g. }
- W4320021636 endingPage "e45355" @default.
- W4320021636 startingPage "e45355" @default.
- W4320021636 abstract "Background Sickle cell disease (SCD) is a genetic red blood cell disorder associated with severe complications including chronic anemia, stroke, and vaso-occlusive crises (VOCs). VOCs are unpredictable, difficult to treat, and the leading cause of hospitalization. Recent efforts have focused on the use of mobile health technology to develop algorithms to predict pain in people with sickle cell disease. Combining the data collection abilities of a consumer wearable, such as the Apple Watch, and machine learning techniques may help us better understand the pain experience and find trends to predict pain from VOCs. Objective The aim of this study is to (1) determine the feasibility of using the Apple Watch to predict the pain scores in people with sickle cell disease admitted to the Duke University SCD Day Hospital, referred to as the Day Hospital, and (2) build and evaluate machine learning algorithms to predict the pain scores of VOCs with the Apple Watch. Methods Following approval of the institutional review board, patients with sickle cell disease, older than 18 years, and admitted to Day Hospital for a VOC between July 2021 and September 2021 were approached to participate in the study. Participants were provided with an Apple Watch Series 3, which is to be worn for the duration of their visit. Data collected from the Apple Watch included heart rate, heart rate variability (calculated), and calories. Pain scores and vital signs were collected from the electronic medical record. Data were analyzed using 3 different machine learning models: multinomial logistic regression, gradient boosting, and random forest, and 2 null models, to assess the accuracy of pain scores. The evaluation metrics considered were accuracy (F1-score), area under the receiving operating characteristic curve, and root-mean-square error (RMSE). Results We enrolled 20 patients with sickle cell disease, all of whom identified as Black or African American and consisted of 12 (60%) females and 8 (40%) males. There were 14 individuals diagnosed with hemoglobin type SS (70%). The median age of the population was 35.5 (IQR 30-41) years. The median time each individual spent wearing the Apple Watch was 2 hours and 17 minutes and a total of 15,683 data points were collected across the population. All models outperformed the null models, and the best-performing model was the random forest model, which was able to predict the pain scores with an accuracy of 84.5%, and a RMSE of 0.84. Conclusions The strong performance of the model in all metrics validates feasibility and the ability to use data collected from a noninvasive device, the Apple Watch, to predict the pain scores during VOCs. It is a novel and feasible approach and presents a low-cost method that could benefit clinicians and individuals with sickle cell disease in the treatment of VOCs." @default.
- W4320021636 created "2023-02-11" @default.
- W4320021636 creator A5001025256 @default.
- W4320021636 creator A5013957405 @default.
- W4320021636 creator A5023891862 @default.
- W4320021636 creator A5046357027 @default.
- W4320021636 creator A5049352081 @default.
- W4320021636 creator A5066567467 @default.
- W4320021636 creator A5083173795 @default.
- W4320021636 date "2023-03-14" @default.
- W4320021636 modified "2023-09-30" @default.
- W4320021636 title "Predicting Pain in People With Sickle Cell Disease in the Day Hospital Using the Commercial Wearable Apple Watch: Feasibility Study" @default.
- W4320021636 cites W128374195 @default.
- W4320021636 cites W1860620008 @default.
- W4320021636 cites W1975405061 @default.
- W4320021636 cites W1984860479 @default.
- W4320021636 cites W1992690434 @default.
- W4320021636 cites W2027662398 @default.
- W4320021636 cites W2053495832 @default.
- W4320021636 cites W2075075486 @default.
- W4320021636 cites W2094903408 @default.
- W4320021636 cites W2101331471 @default.
- W4320021636 cites W2104724413 @default.
- W4320021636 cites W2144773618 @default.
- W4320021636 cites W2409832507 @default.
- W4320021636 cites W2548144048 @default.
- W4320021636 cites W2753409392 @default.
- W4320021636 cites W2759190050 @default.
- W4320021636 cites W2763799072 @default.
- W4320021636 cites W2766894515 @default.
- W4320021636 cites W2898582579 @default.
- W4320021636 cites W2904509656 @default.
- W4320021636 cites W2905520001 @default.
- W4320021636 cites W2954363824 @default.
- W4320021636 cites W2964116189 @default.
- W4320021636 cites W2980332979 @default.
- W4320021636 cites W3004457624 @default.
- W4320021636 cites W3005490538 @default.
- W4320021636 cites W3186477727 @default.
- W4320021636 cites W3201759492 @default.
- W4320021636 cites W4211242268 @default.
- W4320021636 cites W4280565162 @default.
- W4320021636 doi "https://doi.org/10.2196/45355" @default.
- W4320021636 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36917171" @default.
- W4320021636 hasPublicationYear "2023" @default.
- W4320021636 type Work @default.
- W4320021636 citedByCount "0" @default.
- W4320021636 crossrefType "journal-article" @default.
- W4320021636 hasAuthorship W4320021636A5001025256 @default.
- W4320021636 hasAuthorship W4320021636A5013957405 @default.
- W4320021636 hasAuthorship W4320021636A5023891862 @default.
- W4320021636 hasAuthorship W4320021636A5046357027 @default.
- W4320021636 hasAuthorship W4320021636A5049352081 @default.
- W4320021636 hasAuthorship W4320021636A5066567467 @default.
- W4320021636 hasAuthorship W4320021636A5083173795 @default.
- W4320021636 hasBestOaLocation W43200216361 @default.
- W4320021636 hasConcept C126322002 @default.
- W4320021636 hasConcept C127413603 @default.
- W4320021636 hasConcept C141071460 @default.
- W4320021636 hasConcept C151956035 @default.
- W4320021636 hasConcept C160735492 @default.
- W4320021636 hasConcept C162324750 @default.
- W4320021636 hasConcept C1862650 @default.
- W4320021636 hasConcept C2776890885 @default.
- W4320021636 hasConcept C2779134260 @default.
- W4320021636 hasConcept C2780645631 @default.
- W4320021636 hasConcept C3020144179 @default.
- W4320021636 hasConcept C50522688 @default.
- W4320021636 hasConcept C71924100 @default.
- W4320021636 hasConcept C78519656 @default.
- W4320021636 hasConceptScore W4320021636C126322002 @default.
- W4320021636 hasConceptScore W4320021636C127413603 @default.
- W4320021636 hasConceptScore W4320021636C141071460 @default.
- W4320021636 hasConceptScore W4320021636C151956035 @default.
- W4320021636 hasConceptScore W4320021636C160735492 @default.
- W4320021636 hasConceptScore W4320021636C162324750 @default.
- W4320021636 hasConceptScore W4320021636C1862650 @default.
- W4320021636 hasConceptScore W4320021636C2776890885 @default.
- W4320021636 hasConceptScore W4320021636C2779134260 @default.
- W4320021636 hasConceptScore W4320021636C2780645631 @default.
- W4320021636 hasConceptScore W4320021636C3020144179 @default.
- W4320021636 hasConceptScore W4320021636C50522688 @default.
- W4320021636 hasConceptScore W4320021636C71924100 @default.
- W4320021636 hasConceptScore W4320021636C78519656 @default.
- W4320021636 hasLocation W43200216361 @default.
- W4320021636 hasLocation W43200216362 @default.
- W4320021636 hasLocation W43200216363 @default.
- W4320021636 hasOpenAccess W4320021636 @default.
- W4320021636 hasPrimaryLocation W43200216361 @default.
- W4320021636 hasRelatedWork W2101820868 @default.
- W4320021636 hasRelatedWork W2266469091 @default.
- W4320021636 hasRelatedWork W2361857538 @default.
- W4320021636 hasRelatedWork W2363636480 @default.
- W4320021636 hasRelatedWork W2389709268 @default.
- W4320021636 hasRelatedWork W2620708826 @default.
- W4320021636 hasRelatedWork W3094917185 @default.
- W4320021636 hasRelatedWork W3121141420 @default.
- W4320021636 hasRelatedWork W4281864525 @default.