Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320024081> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4320024081 abstract "We discuss our progress towards solving a challenging biomedical problem: identifying similar patterns among multiple physiological nerve signals hidden in high throughput data, collected from micro electrical sensors implanted in several animal organs. The problem is difficult because patterns come as spikes within millisecond time-windows, data sets have high dimensionality and there is background electrical noise. A previous analytic system discovers patterns combining PCA dimensionality reduction and K-means clustering, which is slow and misses important patterns hidden by noise. Moreover, it requires reading the data set several times and it requires multiple languages and tools. With such limitations in mind, we present an improved, integrated system that effectively allows the discovery of more accurate patterns, with automated algorithm parameter tuning, by learning model parameters incrementally exploiting summarization. Our integrated solution combines signal filtering, variable construction (feature engineering) and multidimensional data summarization, for a tighter and more effective integration of PCA and K-means clustering. We present preliminary experiments on signals collected from key nerves in a rat. We show our method discovers more patterns in larger time-windows, with better noise filtering, taking less time. In the future, we plan to link signal patterns to specific physiological functions, paving the way for innovative medical treatment via nerve stimulation." @default.
- W4320024081 created "2023-02-12" @default.
- W4320024081 creator A5003603738 @default.
- W4320024081 creator A5019842397 @default.
- W4320024081 creator A5031610238 @default.
- W4320024081 creator A5035688749 @default.
- W4320024081 creator A5047833962 @default.
- W4320024081 creator A5073354854 @default.
- W4320024081 date "2022-12-17" @default.
- W4320024081 modified "2023-10-18" @default.
- W4320024081 title "Discovering Similar Spike Patterns in High Dimensional Biomedical Signals" @default.
- W4320024081 cites W2049176713 @default.
- W4320024081 cites W2176803657 @default.
- W4320024081 cites W2620661538 @default.
- W4320024081 cites W2793561776 @default.
- W4320024081 cites W2901836189 @default.
- W4320024081 cites W2915081547 @default.
- W4320024081 cites W2920961916 @default.
- W4320024081 cites W2947584707 @default.
- W4320024081 cites W3008778328 @default.
- W4320024081 cites W3039743377 @default.
- W4320024081 cites W3133320198 @default.
- W4320024081 cites W3136212466 @default.
- W4320024081 cites W3197553138 @default.
- W4320024081 cites W3199316730 @default.
- W4320024081 cites W3199385583 @default.
- W4320024081 cites W4206530757 @default.
- W4320024081 doi "https://doi.org/10.1109/bigdata55660.2022.10021088" @default.
- W4320024081 hasPublicationYear "2022" @default.
- W4320024081 type Work @default.
- W4320024081 citedByCount "0" @default.
- W4320024081 crossrefType "proceedings-article" @default.
- W4320024081 hasAuthorship W4320024081A5003603738 @default.
- W4320024081 hasAuthorship W4320024081A5019842397 @default.
- W4320024081 hasAuthorship W4320024081A5031610238 @default.
- W4320024081 hasAuthorship W4320024081A5035688749 @default.
- W4320024081 hasAuthorship W4320024081A5047833962 @default.
- W4320024081 hasAuthorship W4320024081A5073354854 @default.
- W4320024081 hasConcept C111030470 @default.
- W4320024081 hasConcept C115903868 @default.
- W4320024081 hasConcept C115961682 @default.
- W4320024081 hasConcept C119857082 @default.
- W4320024081 hasConcept C124101348 @default.
- W4320024081 hasConcept C153180895 @default.
- W4320024081 hasConcept C154945302 @default.
- W4320024081 hasConcept C170858558 @default.
- W4320024081 hasConcept C177264268 @default.
- W4320024081 hasConcept C199360897 @default.
- W4320024081 hasConcept C2779843651 @default.
- W4320024081 hasConcept C2781390188 @default.
- W4320024081 hasConcept C41008148 @default.
- W4320024081 hasConcept C70518039 @default.
- W4320024081 hasConcept C73555534 @default.
- W4320024081 hasConcept C99498987 @default.
- W4320024081 hasConceptScore W4320024081C111030470 @default.
- W4320024081 hasConceptScore W4320024081C115903868 @default.
- W4320024081 hasConceptScore W4320024081C115961682 @default.
- W4320024081 hasConceptScore W4320024081C119857082 @default.
- W4320024081 hasConceptScore W4320024081C124101348 @default.
- W4320024081 hasConceptScore W4320024081C153180895 @default.
- W4320024081 hasConceptScore W4320024081C154945302 @default.
- W4320024081 hasConceptScore W4320024081C170858558 @default.
- W4320024081 hasConceptScore W4320024081C177264268 @default.
- W4320024081 hasConceptScore W4320024081C199360897 @default.
- W4320024081 hasConceptScore W4320024081C2779843651 @default.
- W4320024081 hasConceptScore W4320024081C2781390188 @default.
- W4320024081 hasConceptScore W4320024081C41008148 @default.
- W4320024081 hasConceptScore W4320024081C70518039 @default.
- W4320024081 hasConceptScore W4320024081C73555534 @default.
- W4320024081 hasConceptScore W4320024081C99498987 @default.
- W4320024081 hasLocation W43200240811 @default.
- W4320024081 hasOpenAccess W4320024081 @default.
- W4320024081 hasPrimaryLocation W43200240811 @default.
- W4320024081 hasRelatedWork W2040963032 @default.
- W4320024081 hasRelatedWork W2073833922 @default.
- W4320024081 hasRelatedWork W2081977560 @default.
- W4320024081 hasRelatedWork W2922457425 @default.
- W4320024081 hasRelatedWork W3083980293 @default.
- W4320024081 hasRelatedWork W3110687914 @default.
- W4320024081 hasRelatedWork W3211035526 @default.
- W4320024081 hasRelatedWork W4250304930 @default.
- W4320024081 hasRelatedWork W6821745 @default.
- W4320024081 hasRelatedWork W2087197267 @default.
- W4320024081 isParatext "false" @default.
- W4320024081 isRetracted "false" @default.
- W4320024081 workType "article" @default.