Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320031941> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4320031941 abstract "India is experiencing a rapid rise in lung cancer cases, with more than 1 lakh new cases forecast in the next five years. 90% of patients who are not discovered early live for five years, however, only 10-15% of patients who are discovered late live for five years. Lung cancer can be discovered early with computed tomography (CT) imaging. To detect and classify lung nodules and their malignancy levels, Computer Tomography (CT) scans were used on lung patients. Since nodules vary widely in size, shape, and texture, detecting them is a difficult task. Moreover, there are other structures in the lungs that are considered to be non-nodules, for example vessels, fibrosis, diffusive diseases, which often resemble nodules in appearance. Therefore, proposed an end-to-end architecture to recognize nodules from three-dimensional CT volume by modified UNet segmentation and CNN based classification on readily available Lung Image Database Consortium – Image Database Resource Initiative (LIDC-IDRI), virtuously self-governing Indian Lung CT Image Database (ILCID) and LNDb Challenge Dataset. According to the results obtained with the proposed method, nodules can be reliably detected and segmented in contrast to the existing lung segmentation, classification and detection algorithms. For nodule segmentation, attained a Dice Similarity Coefficient (DSC) value is about 0.89 and for nodule detection, achieved the Sensitivity of 98.53%." @default.
- W4320031941 created "2023-02-12" @default.
- W4320031941 creator A5001304599 @default.
- W4320031941 creator A5019155143 @default.
- W4320031941 creator A5024176110 @default.
- W4320031941 creator A5026756310 @default.
- W4320031941 creator A5064368466 @default.
- W4320031941 creator A5077686281 @default.
- W4320031941 date "2022-11-26" @default.
- W4320031941 modified "2023-09-27" @default.
- W4320031941 title "Detection and Stage Classification of UNet Segmented Lung Nodules Using CNN" @default.
- W4320031941 cites W2345010043 @default.
- W4320031941 cites W2592929672 @default.
- W4320031941 cites W2752782242 @default.
- W4320031941 cites W2883311907 @default.
- W4320031941 cites W2997947674 @default.
- W4320031941 cites W3025183923 @default.
- W4320031941 cites W3126347848 @default.
- W4320031941 cites W3136692761 @default.
- W4320031941 cites W3137871222 @default.
- W4320031941 cites W3177118917 @default.
- W4320031941 cites W3198343608 @default.
- W4320031941 cites W3205707234 @default.
- W4320031941 cites W4214561975 @default.
- W4320031941 doi "https://doi.org/10.1109/impact55510.2022.10029182" @default.
- W4320031941 hasPublicationYear "2022" @default.
- W4320031941 type Work @default.
- W4320031941 citedByCount "0" @default.
- W4320031941 crossrefType "proceedings-article" @default.
- W4320031941 hasAuthorship W4320031941A5001304599 @default.
- W4320031941 hasAuthorship W4320031941A5019155143 @default.
- W4320031941 hasAuthorship W4320031941A5024176110 @default.
- W4320031941 hasAuthorship W4320031941A5026756310 @default.
- W4320031941 hasAuthorship W4320031941A5064368466 @default.
- W4320031941 hasAuthorship W4320031941A5077686281 @default.
- W4320031941 hasConcept C124504099 @default.
- W4320031941 hasConcept C126322002 @default.
- W4320031941 hasConcept C126838900 @default.
- W4320031941 hasConcept C142724271 @default.
- W4320031941 hasConcept C146357865 @default.
- W4320031941 hasConcept C151730666 @default.
- W4320031941 hasConcept C153180895 @default.
- W4320031941 hasConcept C154945302 @default.
- W4320031941 hasConcept C163892561 @default.
- W4320031941 hasConcept C2776256026 @default.
- W4320031941 hasConcept C2776731575 @default.
- W4320031941 hasConcept C2777714996 @default.
- W4320031941 hasConcept C2779399171 @default.
- W4320031941 hasConcept C41008148 @default.
- W4320031941 hasConcept C544519230 @default.
- W4320031941 hasConcept C71924100 @default.
- W4320031941 hasConcept C86803240 @default.
- W4320031941 hasConcept C89600930 @default.
- W4320031941 hasConceptScore W4320031941C124504099 @default.
- W4320031941 hasConceptScore W4320031941C126322002 @default.
- W4320031941 hasConceptScore W4320031941C126838900 @default.
- W4320031941 hasConceptScore W4320031941C142724271 @default.
- W4320031941 hasConceptScore W4320031941C146357865 @default.
- W4320031941 hasConceptScore W4320031941C151730666 @default.
- W4320031941 hasConceptScore W4320031941C153180895 @default.
- W4320031941 hasConceptScore W4320031941C154945302 @default.
- W4320031941 hasConceptScore W4320031941C163892561 @default.
- W4320031941 hasConceptScore W4320031941C2776256026 @default.
- W4320031941 hasConceptScore W4320031941C2776731575 @default.
- W4320031941 hasConceptScore W4320031941C2777714996 @default.
- W4320031941 hasConceptScore W4320031941C2779399171 @default.
- W4320031941 hasConceptScore W4320031941C41008148 @default.
- W4320031941 hasConceptScore W4320031941C544519230 @default.
- W4320031941 hasConceptScore W4320031941C71924100 @default.
- W4320031941 hasConceptScore W4320031941C86803240 @default.
- W4320031941 hasConceptScore W4320031941C89600930 @default.
- W4320031941 hasLocation W43200319411 @default.
- W4320031941 hasOpenAccess W4320031941 @default.
- W4320031941 hasPrimaryLocation W43200319411 @default.
- W4320031941 hasRelatedWork W1507687735 @default.
- W4320031941 hasRelatedWork W1514650927 @default.
- W4320031941 hasRelatedWork W2005476934 @default.
- W4320031941 hasRelatedWork W2630229246 @default.
- W4320031941 hasRelatedWork W2897195263 @default.
- W4320031941 hasRelatedWork W2942988769 @default.
- W4320031941 hasRelatedWork W2979932740 @default.
- W4320031941 hasRelatedWork W3135174555 @default.
- W4320031941 hasRelatedWork W3152950745 @default.
- W4320031941 hasRelatedWork W4296772914 @default.
- W4320031941 isParatext "false" @default.
- W4320031941 isRetracted "false" @default.
- W4320031941 workType "article" @default.