Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320035335> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4320035335 endingPage "e00619" @default.
- W4320035335 startingPage "e00619" @default.
- W4320035335 abstract "In recent years there has been an increased demand for digital soil mapping (DSM) products. DSM has become the ultimate soil spatial representation framework due to its quantitative results, replicability, and uncertainty analysis. The present study aimed to map the probability distribution of the derived soil profiles (DSPs) of soil typological units (STUs). DSPs are statistical representation of the properties of the soil profiles belonging to STUs. STUs aggregate individual profiles into a group. The criteria used for grouping were homogeneity for World Reference Base (WRB) reference soil group (WRB-RSG), qualifiers (WRB-qu), and Soil Taxonomy particle size for the family classification (USDA-PS), and the belonging to a specific Soil Region. The European Soil Regions have been suggested as the primary grouping criteria for soil mapping at the European continental scale since they define continental-scale soilscapes, distinguished mainly by their climate and geology. To map DSPs, we firstly mapped STUs. The grouping criteria of STUs were mapped at 500 m spatial resolution, using a Neural Network trained on 18,707 georeferenced and analyzed soil profiles selected from the Italian national soil database. A 10% of the soil profiles were randomly sampled using a stratified sampling approach for validation. In particular, the procedure consisted of: i) mapping the grouping criteria WRB-RSG, WRB-qu, and USDA-PS, on a 500 m national grid, through Neural Network; ii) grouping soil profiles on the base of the combinations of grouping criteria (WRB-RSG, WRB-qu, USDA-PS, and Soil Regions) as mapped with the first step at each grid node, to produce a map of Soil Typological Units (STUs); iii) calculating statistics for the soil parameters of the groups of soil profiles created, to produce a map of Derived Soil Profiles (DSPs). DSPs statistics (average, standard deviation, and sample numerosity) were elaborated for the following parameters: soil rooting depth, pH (in water), soil organic carbon, clay, silt, sand, coarse fragments, and cation exchange capacity. The maps obtained were validated against the test set. The same test set was used for the comparison with the National benchmark map (Soils Map of Italy 1:1,000,000) and with the global scale SoilGrids at 250 m spatial resolution. The overall accuracy was 45.98% for the WRB-RSG map compared with the 30.74% of WRB-RSG as mapped with the Soil Map of Italy, and 28.79% as mapped with SoilGrids; 33.07% for WRB-qu compared with the 15.69% of WRB-qu as mapped with the Soil Map of Italy, and 12.45% as mapped with SoilGrids, and 45.48% for USDA-PS, not comparable with the National and Global benchmarks. Tau statistics showed a higher accuracy Kappa of our approach than in others, due to the unbalanced classes numerosity. The predictive ability in the validation of DSPs parameters resulted in a R2 of 0.35 for clay (0.16 with SoilGrids), 0.28 for sand (0.08 with SoilGrids), 0.18 for pH in water (0.21 with SoilGrids). The proposed approach produced harmonized soil type maps with higher accuracy than the previous generation of conventional field-based soil maps for the national benchmark and the calculation of the uncertainty. The STUs express variability of soil properties between groups so their knowledge might improve our understanding of the soil distribution, the planning of their management, monitoring, and the decisions for further surveys. A future challenge will be including more dynamic parameters in the criteria used to create STU, to help monitoring soil management effects." @default.
- W4320035335 created "2023-02-12" @default.
- W4320035335 creator A5004307742 @default.
- W4320035335 creator A5009892152 @default.
- W4320035335 creator A5013294119 @default.
- W4320035335 creator A5028395588 @default.
- W4320035335 date "2023-03-01" @default.
- W4320035335 modified "2023-10-03" @default.
- W4320035335 title "Digital soil mapping of Italy to map derived soil profiles with neural networks" @default.
- W4320035335 cites W1058055990 @default.
- W4320035335 cites W1487054375 @default.
- W4320035335 cites W1510229102 @default.
- W4320035335 cites W1977090475 @default.
- W4320035335 cites W1998025025 @default.
- W4320035335 cites W2000046295 @default.
- W4320035335 cites W2000356578 @default.
- W4320035335 cites W2021981828 @default.
- W4320035335 cites W2032793895 @default.
- W4320035335 cites W2050179592 @default.
- W4320035335 cites W2053154970 @default.
- W4320035335 cites W2054325787 @default.
- W4320035335 cites W2074414809 @default.
- W4320035335 cites W2084028661 @default.
- W4320035335 cites W2122824624 @default.
- W4320035335 cites W2158613289 @default.
- W4320035335 cites W2192498963 @default.
- W4320035335 cites W2295776121 @default.
- W4320035335 cites W2518643351 @default.
- W4320035335 cites W2588003345 @default.
- W4320035335 cites W2613384515 @default.
- W4320035335 cites W2792312436 @default.
- W4320035335 cites W2914042770 @default.
- W4320035335 cites W2946652468 @default.
- W4320035335 cites W2991579025 @default.
- W4320035335 cites W3015083507 @default.
- W4320035335 cites W3138298839 @default.
- W4320035335 cites W4231332005 @default.
- W4320035335 cites W4385750844 @default.
- W4320035335 doi "https://doi.org/10.1016/j.geodrs.2023.e00619" @default.
- W4320035335 hasPublicationYear "2023" @default.
- W4320035335 type Work @default.
- W4320035335 citedByCount "2" @default.
- W4320035335 countsByYear W43200353352023 @default.
- W4320035335 crossrefType "journal-article" @default.
- W4320035335 hasAuthorship W4320035335A5004307742 @default.
- W4320035335 hasAuthorship W4320035335A5009892152 @default.
- W4320035335 hasAuthorship W4320035335A5013294119 @default.
- W4320035335 hasAuthorship W4320035335A5028395588 @default.
- W4320035335 hasBestOaLocation W43200353351 @default.
- W4320035335 hasConcept C104471815 @default.
- W4320035335 hasConcept C152494472 @default.
- W4320035335 hasConcept C159390177 @default.
- W4320035335 hasConcept C159750122 @default.
- W4320035335 hasConcept C205649164 @default.
- W4320035335 hasConcept C2778755073 @default.
- W4320035335 hasConcept C39432304 @default.
- W4320035335 hasConcept C58640448 @default.
- W4320035335 hasConcept C63696750 @default.
- W4320035335 hasConcept C71864017 @default.
- W4320035335 hasConceptScore W4320035335C104471815 @default.
- W4320035335 hasConceptScore W4320035335C152494472 @default.
- W4320035335 hasConceptScore W4320035335C159390177 @default.
- W4320035335 hasConceptScore W4320035335C159750122 @default.
- W4320035335 hasConceptScore W4320035335C205649164 @default.
- W4320035335 hasConceptScore W4320035335C2778755073 @default.
- W4320035335 hasConceptScore W4320035335C39432304 @default.
- W4320035335 hasConceptScore W4320035335C58640448 @default.
- W4320035335 hasConceptScore W4320035335C63696750 @default.
- W4320035335 hasConceptScore W4320035335C71864017 @default.
- W4320035335 hasLocation W43200353351 @default.
- W4320035335 hasOpenAccess W4320035335 @default.
- W4320035335 hasPrimaryLocation W43200353351 @default.
- W4320035335 hasRelatedWork W1788543191 @default.
- W4320035335 hasRelatedWork W2130560194 @default.
- W4320035335 hasRelatedWork W2247452052 @default.
- W4320035335 hasRelatedWork W2362816682 @default.
- W4320035335 hasRelatedWork W2369987819 @default.
- W4320035335 hasRelatedWork W2375667924 @default.
- W4320035335 hasRelatedWork W2473962854 @default.
- W4320035335 hasRelatedWork W2803012048 @default.
- W4320035335 hasRelatedWork W2953150186 @default.
- W4320035335 hasRelatedWork W4313213393 @default.
- W4320035335 hasVolume "32" @default.
- W4320035335 isParatext "false" @default.
- W4320035335 isRetracted "false" @default.
- W4320035335 workType "article" @default.