Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320036887> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4320036887 endingPage "471" @default.
- W4320036887 startingPage "457" @default.
- W4320036887 abstract "When determining a lung nodule malignancy one must consider the spiculation represented by spike-like structures in the nodule’s boundary. In this paper, we develop a deep learning model based on a VGG16 architecture to locate the presence of spiculation in lung nodules from Computed Tomography images. In order to increase the expert’s confidence in the model output, we apply our novel Riemann-Stieltjes Integrated Gradient-weighted Class Activation Mapping attribution method to visualize areas of the image (spicules). Therefore, the attribution method is applied to the layer of the model that is responsible for the detection of the spiculation features. We show that the first layers of the network are specialized in detecting low-level features such as edges, the last convolutional layer detects the general area occupied by the nodule, and finally, we identify that spiculation structures are detected at an intermediate layer. We use three different metrics to support our findings." @default.
- W4320036887 created "2023-02-12" @default.
- W4320036887 creator A5001027068 @default.
- W4320036887 creator A5005267835 @default.
- W4320036887 creator A5041804341 @default.
- W4320036887 creator A5061452480 @default.
- W4320036887 date "2023-01-01" @default.
- W4320036887 modified "2023-10-14" @default.
- W4320036887 title "Explainable Model for Localization of Spiculation in Lung Nodules" @default.
- W4320036887 cites W1972978214 @default.
- W4320036887 cites W1978227284 @default.
- W4320036887 cites W2032938251 @default.
- W4320036887 cites W2069143585 @default.
- W4320036887 cites W2117539524 @default.
- W4320036887 cites W2129212588 @default.
- W4320036887 cites W2136325898 @default.
- W4320036887 cites W2175313593 @default.
- W4320036887 cites W2560270720 @default.
- W4320036887 cites W2570076482 @default.
- W4320036887 cites W2765793020 @default.
- W4320036887 cites W2911933223 @default.
- W4320036887 cites W2919115771 @default.
- W4320036887 cites W2931742923 @default.
- W4320036887 cites W2962688977 @default.
- W4320036887 cites W2995276890 @default.
- W4320036887 cites W3081940763 @default.
- W4320036887 cites W3099876044 @default.
- W4320036887 cites W3102564565 @default.
- W4320036887 cites W3117834991 @default.
- W4320036887 cites W3119612495 @default.
- W4320036887 cites W3160358829 @default.
- W4320036887 cites W4236989464 @default.
- W4320036887 cites W4312721942 @default.
- W4320036887 doi "https://doi.org/10.1007/978-3-031-25082-8_30" @default.
- W4320036887 hasPublicationYear "2023" @default.
- W4320036887 type Work @default.
- W4320036887 citedByCount "0" @default.
- W4320036887 crossrefType "book-chapter" @default.
- W4320036887 hasAuthorship W4320036887A5001027068 @default.
- W4320036887 hasAuthorship W4320036887A5005267835 @default.
- W4320036887 hasAuthorship W4320036887A5041804341 @default.
- W4320036887 hasAuthorship W4320036887A5061452480 @default.
- W4320036887 hasConcept C127313418 @default.
- W4320036887 hasConcept C134306372 @default.
- W4320036887 hasConcept C151730666 @default.
- W4320036887 hasConcept C153180895 @default.
- W4320036887 hasConcept C154945302 @default.
- W4320036887 hasConcept C178790620 @default.
- W4320036887 hasConcept C185592680 @default.
- W4320036887 hasConcept C2776731575 @default.
- W4320036887 hasConcept C2779227376 @default.
- W4320036887 hasConcept C33923547 @default.
- W4320036887 hasConcept C41008148 @default.
- W4320036887 hasConcept C62354387 @default.
- W4320036887 hasConceptScore W4320036887C127313418 @default.
- W4320036887 hasConceptScore W4320036887C134306372 @default.
- W4320036887 hasConceptScore W4320036887C151730666 @default.
- W4320036887 hasConceptScore W4320036887C153180895 @default.
- W4320036887 hasConceptScore W4320036887C154945302 @default.
- W4320036887 hasConceptScore W4320036887C178790620 @default.
- W4320036887 hasConceptScore W4320036887C185592680 @default.
- W4320036887 hasConceptScore W4320036887C2776731575 @default.
- W4320036887 hasConceptScore W4320036887C2779227376 @default.
- W4320036887 hasConceptScore W4320036887C33923547 @default.
- W4320036887 hasConceptScore W4320036887C41008148 @default.
- W4320036887 hasConceptScore W4320036887C62354387 @default.
- W4320036887 hasLocation W43200368871 @default.
- W4320036887 hasOpenAccess W4320036887 @default.
- W4320036887 hasPrimaryLocation W43200368871 @default.
- W4320036887 hasRelatedWork W2033914206 @default.
- W4320036887 hasRelatedWork W2042327336 @default.
- W4320036887 hasRelatedWork W2046077695 @default.
- W4320036887 hasRelatedWork W2146076056 @default.
- W4320036887 hasRelatedWork W2163831990 @default.
- W4320036887 hasRelatedWork W2378160586 @default.
- W4320036887 hasRelatedWork W2996038082 @default.
- W4320036887 hasRelatedWork W3003836766 @default.
- W4320036887 hasRelatedWork W3047965787 @default.
- W4320036887 hasRelatedWork W3184582087 @default.
- W4320036887 isParatext "false" @default.
- W4320036887 isRetracted "false" @default.
- W4320036887 workType "book-chapter" @default.