Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320040108> ?p ?o ?g. }
- W4320040108 abstract "Dynamics and conformational sampling are essential for linking protein structure to biological function. While challenging to probe experimentally, computer simulations are widely used to describe protein dynamics, but at significant computational costs that continue to limit the systems that can be studied. Here, we demonstrate that machine learning can be trained with simulation data to directly generate physically realistic conformational ensembles of proteins without the need for any sampling and at negligible computational cost. As a proof-of-principle we train a generative adversarial network based on a transformer architecture with self-attention on coarse-grained simulations of intrinsically disordered peptides. The resulting model, idpGAN, can predict sequence-dependent coarse-grained ensembles for sequences that are not present in the training set demonstrating that transferability can be achieved beyond the limited training data. We also retrain idpGAN on atomistic simulation data to show that the approach can be extended in principle to higher-resolution conformational ensemble generation." @default.
- W4320040108 created "2023-02-12" @default.
- W4320040108 creator A5047133042 @default.
- W4320040108 creator A5061800523 @default.
- W4320040108 creator A5079113446 @default.
- W4320040108 creator A5087087224 @default.
- W4320040108 date "2023-02-11" @default.
- W4320040108 modified "2023-10-03" @default.
- W4320040108 title "Direct generation of protein conformational ensembles via machine learning" @default.
- W4320040108 cites W155626891 @default.
- W4320040108 cites W1970022221 @default.
- W4320040108 cites W2008708467 @default.
- W4320040108 cites W2043308634 @default.
- W4320040108 cites W2046002103 @default.
- W4320040108 cites W2054881399 @default.
- W4320040108 cites W2086817352 @default.
- W4320040108 cites W2105573149 @default.
- W4320040108 cites W2121400889 @default.
- W4320040108 cites W2132262459 @default.
- W4320040108 cites W2138122982 @default.
- W4320040108 cites W2147988069 @default.
- W4320040108 cites W2165581033 @default.
- W4320040108 cites W2772099288 @default.
- W4320040108 cites W2792719990 @default.
- W4320040108 cites W2889099008 @default.
- W4320040108 cites W2904865562 @default.
- W4320040108 cites W2949223833 @default.
- W4320040108 cites W2972246420 @default.
- W4320040108 cites W2991470870 @default.
- W4320040108 cites W3098321015 @default.
- W4320040108 cites W3099423575 @default.
- W4320040108 cites W3105774298 @default.
- W4320040108 cites W3106395629 @default.
- W4320040108 cites W3122883665 @default.
- W4320040108 cites W3146547718 @default.
- W4320040108 cites W3157345013 @default.
- W4320040108 cites W3157396426 @default.
- W4320040108 cites W3162614523 @default.
- W4320040108 cites W3177828909 @default.
- W4320040108 cites W3178087467 @default.
- W4320040108 cites W3186179742 @default.
- W4320040108 cites W3195375135 @default.
- W4320040108 cites W3200707343 @default.
- W4320040108 cites W3202433082 @default.
- W4320040108 cites W3204937802 @default.
- W4320040108 cites W3214870576 @default.
- W4320040108 cites W4225861603 @default.
- W4320040108 cites W4297951436 @default.
- W4320040108 cites W4313650843 @default.
- W4320040108 doi "https://doi.org/10.1038/s41467-023-36443-x" @default.
- W4320040108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36774359" @default.
- W4320040108 hasPublicationYear "2023" @default.
- W4320040108 type Work @default.
- W4320040108 citedByCount "12" @default.
- W4320040108 countsByYear W43200401082023 @default.
- W4320040108 crossrefType "journal-article" @default.
- W4320040108 hasAuthorship W4320040108A5047133042 @default.
- W4320040108 hasAuthorship W4320040108A5061800523 @default.
- W4320040108 hasAuthorship W4320040108A5079113446 @default.
- W4320040108 hasAuthorship W4320040108A5087087224 @default.
- W4320040108 hasBestOaLocation W43200401081 @default.
- W4320040108 hasConcept C119857082 @default.
- W4320040108 hasConcept C140331021 @default.
- W4320040108 hasConcept C14036430 @default.
- W4320040108 hasConcept C147597530 @default.
- W4320040108 hasConcept C154945302 @default.
- W4320040108 hasConcept C185592680 @default.
- W4320040108 hasConcept C2778112365 @default.
- W4320040108 hasConcept C39890363 @default.
- W4320040108 hasConcept C41008148 @default.
- W4320040108 hasConcept C51632099 @default.
- W4320040108 hasConcept C55493867 @default.
- W4320040108 hasConcept C59593255 @default.
- W4320040108 hasConcept C61272859 @default.
- W4320040108 hasConcept C78458016 @default.
- W4320040108 hasConcept C86803240 @default.
- W4320040108 hasConceptScore W4320040108C119857082 @default.
- W4320040108 hasConceptScore W4320040108C140331021 @default.
- W4320040108 hasConceptScore W4320040108C14036430 @default.
- W4320040108 hasConceptScore W4320040108C147597530 @default.
- W4320040108 hasConceptScore W4320040108C154945302 @default.
- W4320040108 hasConceptScore W4320040108C185592680 @default.
- W4320040108 hasConceptScore W4320040108C2778112365 @default.
- W4320040108 hasConceptScore W4320040108C39890363 @default.
- W4320040108 hasConceptScore W4320040108C41008148 @default.
- W4320040108 hasConceptScore W4320040108C51632099 @default.
- W4320040108 hasConceptScore W4320040108C55493867 @default.
- W4320040108 hasConceptScore W4320040108C59593255 @default.
- W4320040108 hasConceptScore W4320040108C61272859 @default.
- W4320040108 hasConceptScore W4320040108C78458016 @default.
- W4320040108 hasConceptScore W4320040108C86803240 @default.
- W4320040108 hasFunder F4320337354 @default.
- W4320040108 hasIssue "1" @default.
- W4320040108 hasLocation W43200401081 @default.
- W4320040108 hasLocation W43200401082 @default.
- W4320040108 hasLocation W43200401083 @default.
- W4320040108 hasLocation W43200401084 @default.
- W4320040108 hasOpenAccess W4320040108 @default.
- W4320040108 hasPrimaryLocation W43200401081 @default.
- W4320040108 hasRelatedWork W2961085424 @default.