Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320041023> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W4320041023 endingPage "328" @default.
- W4320041023 startingPage "317" @default.
- W4320041023 abstract "Let G = (V (G), E(G)) be a finite (p, q) graph and let (A, ∗) be a finite non-abelain group with identity element 1. Let f : E(G) → Nq = {1, 2, . . . , q} and let g : E(G) → A {1} be two edge labelings of G such that f is bijective. Using these two labelings f and g we can define another edge labeling l : E(G) → Nq × A {1} by l(e) := (f (e), g(e)) for all e ∈ E(G). Define a relation ≤ on the range of l by: (f (e), g(e)) ≤ (f (ej), g(ej)) if and only if f (e) ≤ f (ej). This relation ≤ is a partial order on the range of l. Let {(f (e1), g(e1)), (f (e2), g(e2)), . . . , (f (ek), g(ek))} be a chain in the range of l. We define a product of the elements of this chain as follows: k (f (ei), g(ei)) := ((((g(e1) ∗ g(e2)) ∗ g(e3)) ∗ · · · ) ∗ g(ek). i=1 Let u ∈ V and let N ∗(u) be the set of all edges incident with u. Note that the restriction of l on N ∗(u) is a chain, say (f (e1), g(e1)) ≤ (f (e2), g(e2)) ≤ · · · ≤ (f (en), g(en)). We define n l∗(u) := (f (ei), g(ei)). i=1 If l∗(u) is a constant, say a for all u V (G), we say that the graph G is A - magic. The map l∗ is called an A -magic labeling of G and the corresponding constant a is called the magic constant. In this paper, we consider the permutation group S3 and investigate graphs that are S3-magic." @default.
- W4320041023 created "2023-02-12" @default.
- W4320041023 creator A5011199195 @default.
- W4320041023 creator A5022498817 @default.
- W4320041023 date "2022-12-30" @default.
- W4320041023 modified "2023-10-05" @default.
- W4320041023 title "ON THE S3-MAGIC GRAPHS" @default.
- W4320041023 doi "https://doi.org/10.56827/seajmms.2022.1803.26" @default.
- W4320041023 hasPublicationYear "2022" @default.
- W4320041023 type Work @default.
- W4320041023 citedByCount "0" @default.
- W4320041023 crossrefType "journal-article" @default.
- W4320041023 hasAuthorship W4320041023A5011199195 @default.
- W4320041023 hasAuthorship W4320041023A5022498817 @default.
- W4320041023 hasBestOaLocation W43200410231 @default.
- W4320041023 hasConcept C114614502 @default.
- W4320041023 hasConcept C121332964 @default.
- W4320041023 hasConcept C132525143 @default.
- W4320041023 hasConcept C24424167 @default.
- W4320041023 hasConcept C33923547 @default.
- W4320041023 hasConceptScore W4320041023C114614502 @default.
- W4320041023 hasConceptScore W4320041023C121332964 @default.
- W4320041023 hasConceptScore W4320041023C132525143 @default.
- W4320041023 hasConceptScore W4320041023C24424167 @default.
- W4320041023 hasConceptScore W4320041023C33923547 @default.
- W4320041023 hasIssue "03" @default.
- W4320041023 hasLocation W43200410231 @default.
- W4320041023 hasOpenAccess W4320041023 @default.
- W4320041023 hasPrimaryLocation W43200410231 @default.
- W4320041023 hasRelatedWork W1986950726 @default.
- W4320041023 hasRelatedWork W2097491593 @default.
- W4320041023 hasRelatedWork W2325645292 @default.
- W4320041023 hasRelatedWork W2931211793 @default.
- W4320041023 hasRelatedWork W2983542520 @default.
- W4320041023 hasRelatedWork W3206431649 @default.
- W4320041023 hasRelatedWork W4290951291 @default.
- W4320041023 hasRelatedWork W4295911352 @default.
- W4320041023 hasRelatedWork W4376487833 @default.
- W4320041023 hasRelatedWork W3112363355 @default.
- W4320041023 hasVolume "18" @default.
- W4320041023 isParatext "false" @default.
- W4320041023 isRetracted "false" @default.
- W4320041023 workType "article" @default.