Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320063377> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4320063377 endingPage "2146" @default.
- W4320063377 startingPage "2134" @default.
- W4320063377 abstract "This article addresses cyber security risk assessment in industrial internet of things (IIoT) networks, and particularly the continuous risk assessment (CRA) process, which assumes real-time, dynamic risk evaluation based on the run-time data. IIoT cyber security risks, threats, and attacks are briefly presented. Requirements for cyber security risk assessment of industrial control systems as well as applicability of machine learning for that purpose are considered. The architectural view of the CRA process in the IIoT environment is presented and discussed. Possibilities of deep learning approaches to achieve CRA in IIoT systems are explored. Deep learning can be integrated into edge-computing-based systems and used for feature extraction and risk classification from massive raw data. Several research works are presented and briefly discussed. The article ends with emphasizing the future research directions and concluding remarks." @default.
- W4320063377 created "2023-02-12" @default.
- W4320063377 creator A5061962384 @default.
- W4320063377 creator A5080151946 @default.
- W4320063377 date "2022-10-14" @default.
- W4320063377 modified "2023-09-27" @default.
- W4320063377 title "Deep Learning for Cyber Security Risk Assessment in IIoT Systems" @default.
- W4320063377 cites W2131060714 @default.
- W4320063377 cites W2322987107 @default.
- W4320063377 cites W2619874920 @default.
- W4320063377 cites W2803881474 @default.
- W4320063377 cites W2834693362 @default.
- W4320063377 cites W2887347806 @default.
- W4320063377 cites W2901940130 @default.
- W4320063377 cites W2913550059 @default.
- W4320063377 cites W2913790335 @default.
- W4320063377 cites W2941500089 @default.
- W4320063377 cites W2942231644 @default.
- W4320063377 cites W2969321102 @default.
- W4320063377 cites W2980701762 @default.
- W4320063377 cites W2981915020 @default.
- W4320063377 cites W3008505271 @default.
- W4320063377 cites W3011266834 @default.
- W4320063377 cites W3024669438 @default.
- W4320063377 cites W3040207089 @default.
- W4320063377 cites W3048176135 @default.
- W4320063377 cites W3099580559 @default.
- W4320063377 cites W3107556155 @default.
- W4320063377 cites W3129061468 @default.
- W4320063377 cites W3140854437 @default.
- W4320063377 cites W3140933240 @default.
- W4320063377 cites W3201280939 @default.
- W4320063377 doi "https://doi.org/10.4018/978-1-7998-9220-5.ch127" @default.
- W4320063377 hasPublicationYear "2022" @default.
- W4320063377 type Work @default.
- W4320063377 citedByCount "0" @default.
- W4320063377 crossrefType "book-chapter" @default.
- W4320063377 hasAuthorship W4320063377A5061962384 @default.
- W4320063377 hasAuthorship W4320063377A5080151946 @default.
- W4320063377 hasConcept C108583219 @default.
- W4320063377 hasConcept C111919701 @default.
- W4320063377 hasConcept C112930515 @default.
- W4320063377 hasConcept C12174686 @default.
- W4320063377 hasConcept C144133560 @default.
- W4320063377 hasConcept C154945302 @default.
- W4320063377 hasConcept C202839342 @default.
- W4320063377 hasConcept C2522767166 @default.
- W4320063377 hasConcept C2775924081 @default.
- W4320063377 hasConcept C38652104 @default.
- W4320063377 hasConcept C40071531 @default.
- W4320063377 hasConcept C41008148 @default.
- W4320063377 hasConcept C81860439 @default.
- W4320063377 hasConcept C98045186 @default.
- W4320063377 hasConceptScore W4320063377C108583219 @default.
- W4320063377 hasConceptScore W4320063377C111919701 @default.
- W4320063377 hasConceptScore W4320063377C112930515 @default.
- W4320063377 hasConceptScore W4320063377C12174686 @default.
- W4320063377 hasConceptScore W4320063377C144133560 @default.
- W4320063377 hasConceptScore W4320063377C154945302 @default.
- W4320063377 hasConceptScore W4320063377C202839342 @default.
- W4320063377 hasConceptScore W4320063377C2522767166 @default.
- W4320063377 hasConceptScore W4320063377C2775924081 @default.
- W4320063377 hasConceptScore W4320063377C38652104 @default.
- W4320063377 hasConceptScore W4320063377C40071531 @default.
- W4320063377 hasConceptScore W4320063377C41008148 @default.
- W4320063377 hasConceptScore W4320063377C81860439 @default.
- W4320063377 hasConceptScore W4320063377C98045186 @default.
- W4320063377 hasLocation W43200633771 @default.
- W4320063377 hasOpenAccess W4320063377 @default.
- W4320063377 hasPrimaryLocation W43200633771 @default.
- W4320063377 hasRelatedWork W2103113646 @default.
- W4320063377 hasRelatedWork W2345350058 @default.
- W4320063377 hasRelatedWork W2788972609 @default.
- W4320063377 hasRelatedWork W2802134243 @default.
- W4320063377 hasRelatedWork W3046826460 @default.
- W4320063377 hasRelatedWork W3112491350 @default.
- W4320063377 hasRelatedWork W3174929305 @default.
- W4320063377 hasRelatedWork W4281849564 @default.
- W4320063377 hasRelatedWork W4293731890 @default.
- W4320063377 hasRelatedWork W4309356115 @default.
- W4320063377 isParatext "false" @default.
- W4320063377 isRetracted "false" @default.
- W4320063377 workType "book-chapter" @default.