Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320064650> ?p ?o ?g. }
- W4320064650 endingPage "e43222" @default.
- W4320064650 startingPage "e43222" @default.
- W4320064650 abstract "Background According to the World Health Organization, globally, one in seven 10- to 19-year-olds experiences a mental disorder, accounting for 13% of the global burden of disease in this age group. Half of all mental illnesses begin by the age of 14 years and some teenagers with severe presentations must be admitted to the hospital and assessed by highly skilled mental health care practitioners. Digital telehealth solutions can be useful for the assessment of young individuals remotely. Ultimately, this technology can save travel costs for the health service rather than assessing adolescents in person at the corresponding hospital. Especially in rural regions, where travel times can be high, this innovative approach can make a difference to patients by providing quicker assessments. Objective The aim of this study is to share insights on how we developed a decision support tool to assign staff to days and locations where adolescent mental health patients are assessed face to face. Where possible, patients are seen through video consultation. The model not only seeks to reduce travel times and consequently carbon emissions but also can be used to find a minimum number of staff to run the service. Methods To model the problem, we used integer linear programming, a technique that is used in mathematical modeling. The model features 2 objectives: first, we aim to find a minimum coverage of staff to provide the service and second, to reduce travel time. The constraints that are formulated algebraically are used to ensure the feasibility of the schedule. The model is implemented using an open-source solver backend. Results In our case study, we focus on real-world demand coming from different hospital sites in the UK National Health Service (NHS). We incorporate our model into a decision support tool and solve a realistic test instance. Our results reveal that the tool is not only capable of solving this problem efficiently but also shows the benefits of using mathematical modeling in health services. Conclusions Our approach can be used by NHS managers to better match capacity and location-dependent demands within an increasing need for hybrid telemedical services, and the aims to reduce traveling and the carbon footprint within health care organizations." @default.
- W4320064650 created "2023-02-12" @default.
- W4320064650 creator A5014427428 @default.
- W4320064650 creator A5033782218 @default.
- W4320064650 creator A5049691598 @default.
- W4320064650 creator A5080473532 @default.
- W4320064650 date "2023-03-28" @default.
- W4320064650 modified "2023-10-01" @default.
- W4320064650 title "Optimizing an Adolescent Hybrid Telemedical Mental Health Service Through Staff Scheduling Using Mathematical Programming: Model Development Study" @default.
- W4320064650 cites W1510225120 @default.
- W4320064650 cites W1969479831 @default.
- W4320064650 cites W1969792227 @default.
- W4320064650 cites W1997207913 @default.
- W4320064650 cites W2015518812 @default.
- W4320064650 cites W2024681235 @default.
- W4320064650 cites W2047971992 @default.
- W4320064650 cites W2056781000 @default.
- W4320064650 cites W2116969063 @default.
- W4320064650 cites W2118539901 @default.
- W4320064650 cites W2149883528 @default.
- W4320064650 cites W2158218297 @default.
- W4320064650 cites W2202480869 @default.
- W4320064650 cites W2290139358 @default.
- W4320064650 cites W2508585969 @default.
- W4320064650 cites W2596640152 @default.
- W4320064650 cites W2743899933 @default.
- W4320064650 cites W2801605142 @default.
- W4320064650 cites W3012290708 @default.
- W4320064650 cites W3188640173 @default.
- W4320064650 cites W4233318141 @default.
- W4320064650 cites W4246156490 @default.
- W4320064650 cites W4300555508 @default.
- W4320064650 cites W4380290293 @default.
- W4320064650 cites W6038053 @default.
- W4320064650 doi "https://doi.org/10.2196/43222" @default.
- W4320064650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36976622" @default.
- W4320064650 hasPublicationYear "2023" @default.
- W4320064650 type Work @default.
- W4320064650 citedByCount "2" @default.
- W4320064650 countsByYear W43200646502023 @default.
- W4320064650 crossrefType "journal-article" @default.
- W4320064650 hasAuthorship W4320064650A5014427428 @default.
- W4320064650 hasAuthorship W4320064650A5033782218 @default.
- W4320064650 hasAuthorship W4320064650A5049691598 @default.
- W4320064650 hasAuthorship W4320064650A5080473532 @default.
- W4320064650 hasBestOaLocation W43200646501 @default.
- W4320064650 hasConcept C111919701 @default.
- W4320064650 hasConcept C11413529 @default.
- W4320064650 hasConcept C118552586 @default.
- W4320064650 hasConcept C127413603 @default.
- W4320064650 hasConcept C134362201 @default.
- W4320064650 hasConcept C144133560 @default.
- W4320064650 hasConcept C15744967 @default.
- W4320064650 hasConcept C159110408 @default.
- W4320064650 hasConcept C160735492 @default.
- W4320064650 hasConcept C162324750 @default.
- W4320064650 hasConcept C162853370 @default.
- W4320064650 hasConcept C206729178 @default.
- W4320064650 hasConcept C21547014 @default.
- W4320064650 hasConcept C2779891985 @default.
- W4320064650 hasConcept C2780378061 @default.
- W4320064650 hasConcept C2781050511 @default.
- W4320064650 hasConcept C3019351904 @default.
- W4320064650 hasConcept C41008148 @default.
- W4320064650 hasConcept C50522688 @default.
- W4320064650 hasConcept C545542383 @default.
- W4320064650 hasConcept C56086750 @default.
- W4320064650 hasConcept C68387754 @default.
- W4320064650 hasConcept C71924100 @default.
- W4320064650 hasConceptScore W4320064650C111919701 @default.
- W4320064650 hasConceptScore W4320064650C11413529 @default.
- W4320064650 hasConceptScore W4320064650C118552586 @default.
- W4320064650 hasConceptScore W4320064650C127413603 @default.
- W4320064650 hasConceptScore W4320064650C134362201 @default.
- W4320064650 hasConceptScore W4320064650C144133560 @default.
- W4320064650 hasConceptScore W4320064650C15744967 @default.
- W4320064650 hasConceptScore W4320064650C159110408 @default.
- W4320064650 hasConceptScore W4320064650C160735492 @default.
- W4320064650 hasConceptScore W4320064650C162324750 @default.
- W4320064650 hasConceptScore W4320064650C162853370 @default.
- W4320064650 hasConceptScore W4320064650C206729178 @default.
- W4320064650 hasConceptScore W4320064650C21547014 @default.
- W4320064650 hasConceptScore W4320064650C2779891985 @default.
- W4320064650 hasConceptScore W4320064650C2780378061 @default.
- W4320064650 hasConceptScore W4320064650C2781050511 @default.
- W4320064650 hasConceptScore W4320064650C3019351904 @default.
- W4320064650 hasConceptScore W4320064650C41008148 @default.
- W4320064650 hasConceptScore W4320064650C50522688 @default.
- W4320064650 hasConceptScore W4320064650C545542383 @default.
- W4320064650 hasConceptScore W4320064650C56086750 @default.
- W4320064650 hasConceptScore W4320064650C68387754 @default.
- W4320064650 hasConceptScore W4320064650C71924100 @default.
- W4320064650 hasLocation W43200646501 @default.
- W4320064650 hasLocation W43200646502 @default.
- W4320064650 hasLocation W43200646503 @default.
- W4320064650 hasLocation W43200646504 @default.
- W4320064650 hasOpenAccess W4320064650 @default.
- W4320064650 hasPrimaryLocation W43200646501 @default.