Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320073485> ?p ?o ?g. }
- W4320073485 endingPage "e42714" @default.
- W4320073485 startingPage "e42714" @default.
- W4320073485 abstract "Background Medication adherence is a global public health challenge, as only approximately 50% of people adhere to their medication regimens. Medication reminders have shown promising results in terms of promoting medication adherence. However, practical mechanisms to determine whether a medication has been taken or not, once people are reminded, remain elusive. Emerging smartwatch technology may more objectively, unobtrusively, and automatically detect medication taking than currently available methods. Objective This study aimed to examine the feasibility of detecting natural medication-taking gestures using smartwatches. Methods A convenience sample (N=28) was recruited using the snowball sampling method. During data collection, each participant recorded at least 5 protocol-guided (scripted) medication-taking events and at least 10 natural instances of medication-taking events per day for 5 days. Using a smartwatch, the accelerometer data were recorded for each session at a sampling rate of 25 Hz. The raw recordings were scrutinized by a team member to validate the accuracy of the self-reports. The validated data were used to train an artificial neural network (ANN) to detect a medication-taking event. The training and testing data included previously recorded accelerometer data from smoking, eating, and jogging activities in addition to the medication-taking data recorded in this study. The accuracy of the model to identify medication taking was evaluated by comparing the ANN’s output with the actual output. Results Most (n=20, 71%) of the 28 study participants were college students and aged 20 to 56 years. Most individuals were Asian (n=12, 43%) or White (n=12, 43%), single (n=24, 86%), and right-hand dominant (n=23, 82%). In total, 2800 medication-taking gestures (n=1400, 50% natural plus n=1400, 50% scripted gestures) were used to train the network. During the testing session, 560 natural medication-taking events that were not previously presented to the ANN were used to assess the network. The accuracy, precision, and recall were calculated to confirm the performance of the network. The trained ANN exhibited an average true-positive and true-negative performance of 96.5% and 94.5%, respectively. The network exhibited <5% error in the incorrect classification of medication-taking gestures. Conclusions Smartwatch technology may provide an accurate, nonintrusive means of monitoring complex human behaviors such as natural medication-taking gestures. Future research is warranted to evaluate the efficacy of using modern sensing devices and machine learning algorithms to monitor medication-taking behavior and improve medication adherence." @default.
- W4320073485 created "2023-02-12" @default.
- W4320073485 creator A5011867187 @default.
- W4320073485 creator A5021973133 @default.
- W4320073485 creator A5028159627 @default.
- W4320073485 creator A5031462397 @default.
- W4320073485 creator A5037460743 @default.
- W4320073485 creator A5037759686 @default.
- W4320073485 date "2023-05-04" @default.
- W4320073485 modified "2023-09-27" @default.
- W4320073485 title "Detecting Medication-Taking Gestures Using Machine Learning and Accelerometer Data Collected via Smartwatch Technology: Instrument Validation Study" @default.
- W4320073485 cites W1503521638 @default.
- W4320073485 cites W1530126621 @default.
- W4320073485 cites W1947722389 @default.
- W4320073485 cites W1995435322 @default.
- W4320073485 cites W2007717933 @default.
- W4320073485 cites W2017231306 @default.
- W4320073485 cites W2047187313 @default.
- W4320073485 cites W2064675550 @default.
- W4320073485 cites W2079676608 @default.
- W4320073485 cites W2084553975 @default.
- W4320073485 cites W2098929579 @default.
- W4320073485 cites W2103532308 @default.
- W4320073485 cites W2113033841 @default.
- W4320073485 cites W2129793335 @default.
- W4320073485 cites W2148653627 @default.
- W4320073485 cites W2178873284 @default.
- W4320073485 cites W2195342085 @default.
- W4320073485 cites W2304267454 @default.
- W4320073485 cites W2316364810 @default.
- W4320073485 cites W2330005225 @default.
- W4320073485 cites W2493860075 @default.
- W4320073485 cites W2513422586 @default.
- W4320073485 cites W2518651690 @default.
- W4320073485 cites W2538483848 @default.
- W4320073485 cites W2550476060 @default.
- W4320073485 cites W2556501329 @default.
- W4320073485 cites W2568993235 @default.
- W4320073485 cites W2597284704 @default.
- W4320073485 cites W2615421112 @default.
- W4320073485 cites W2730168622 @default.
- W4320073485 cites W2742721957 @default.
- W4320073485 cites W2746562707 @default.
- W4320073485 cites W2754715712 @default.
- W4320073485 cites W2756058504 @default.
- W4320073485 cites W2769501257 @default.
- W4320073485 cites W2771627735 @default.
- W4320073485 cites W2773648663 @default.
- W4320073485 cites W2799481744 @default.
- W4320073485 cites W2801118647 @default.
- W4320073485 cites W2807447523 @default.
- W4320073485 cites W2896783937 @default.
- W4320073485 cites W2898873184 @default.
- W4320073485 cites W2941690445 @default.
- W4320073485 cites W2944851425 @default.
- W4320073485 cites W2963993350 @default.
- W4320073485 cites W2971659033 @default.
- W4320073485 cites W2982207605 @default.
- W4320073485 cites W2997408561 @default.
- W4320073485 cites W3007417859 @default.
- W4320073485 cites W3015936806 @default.
- W4320073485 cites W3015988073 @default.
- W4320073485 cites W3019137929 @default.
- W4320073485 cites W3040595656 @default.
- W4320073485 cites W3119914539 @default.
- W4320073485 cites W3184262661 @default.
- W4320073485 cites W3214501787 @default.
- W4320073485 cites W4239548902 @default.
- W4320073485 cites W789208081 @default.
- W4320073485 doi "https://doi.org/10.2196/42714" @default.
- W4320073485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37140971" @default.
- W4320073485 hasPublicationYear "2023" @default.
- W4320073485 type Work @default.
- W4320073485 citedByCount "0" @default.
- W4320073485 crossrefType "journal-article" @default.
- W4320073485 hasAuthorship W4320073485A5011867187 @default.
- W4320073485 hasAuthorship W4320073485A5021973133 @default.
- W4320073485 hasAuthorship W4320073485A5028159627 @default.
- W4320073485 hasAuthorship W4320073485A5031462397 @default.
- W4320073485 hasAuthorship W4320073485A5037460743 @default.
- W4320073485 hasAuthorship W4320073485A5037759686 @default.
- W4320073485 hasBestOaLocation W43200734851 @default.
- W4320073485 hasConcept C105795698 @default.
- W4320073485 hasConcept C106399304 @default.
- W4320073485 hasConcept C111919701 @default.
- W4320073485 hasConcept C119857082 @default.
- W4320073485 hasConcept C133462117 @default.
- W4320073485 hasConcept C136764020 @default.
- W4320073485 hasConcept C142724271 @default.
- W4320073485 hasConcept C149635348 @default.
- W4320073485 hasConcept C150594956 @default.
- W4320073485 hasConcept C154945302 @default.
- W4320073485 hasConcept C207347870 @default.
- W4320073485 hasConcept C2779182362 @default.
- W4320073485 hasConcept C29794715 @default.
- W4320073485 hasConcept C33923547 @default.
- W4320073485 hasConcept C41008148 @default.
- W4320073485 hasConcept C71924100 @default.