Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320079976> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4320079976 endingPage "11" @default.
- W4320079976 startingPage "1" @default.
- W4320079976 abstract "The examination local area has utilized man-made brainpower, and specifically machine learning, in various ways to change various unique and, surprisingly, heterogeneous data sources into excellent realities and information, offering driving capacities to exact example finding. In any case, utilizing machine learning strategies on enormous and convoluted datasets is computationally costly and utilizes a great deal of coherent and actual assets, including central processor, memory, and data record space.In the current study collected the review of different researchers from 2010 to 2022. As how much data produced consistently arrives at quintillions of bytes, it is turning out to be more pivotal than any other time in recent memory to have a vigorous stage for powerful big data examination. Quite possibly of the most notable big datum investigation stages is Apache Spark MLlib, which gives various extraordinary capabilities for machine learning applications like relapse, grouping, aspect decrease, bunching, and rule extraction. This study's hidden reason is that Spark ML's big data execution and precision are fundamentally better than Spark Mllib's. The dataset for bank client exchanges is utilized in the correlation. We are probably not going to have the option to handle the sums and sorts of data we are managing with conventional programming arrangements. Thus, present day big data handling innovations that can disperse and deal with data in a versatile way are either coordinated into or taken over by conventional business knowledge (BI) frameworks. Big data innovation can likewise assist us with learning more about security, which can be found from colossal databases. The big data examination motor Apache Spark is utilized in the review to introduce a security-related data investigation." @default.
- W4320079976 created "2023-02-12" @default.
- W4320079976 creator A5027616515 @default.
- W4320079976 date "2022-01-15" @default.
- W4320079976 modified "2023-09-30" @default.
- W4320079976 title "Big Data Machine Learning Using Apache Spark Mllib" @default.
- W4320079976 cites W1593676372 @default.
- W4320079976 cites W1903029394 @default.
- W4320079976 cites W2011131726 @default.
- W4320079976 cites W2013953038 @default.
- W4320079976 cites W2047496789 @default.
- W4320079976 cites W2074702228 @default.
- W4320079976 cites W2078945459 @default.
- W4320079976 cites W2095727900 @default.
- W4320079976 cites W2526009326 @default.
- W4320079976 cites W2558014242 @default.
- W4320079976 cites W2579583823 @default.
- W4320079976 cites W2963062302 @default.
- W4320079976 doi "https://doi.org/10.58496/mjbd/2022/001" @default.
- W4320079976 hasPublicationYear "2022" @default.
- W4320079976 type Work @default.
- W4320079976 citedByCount "0" @default.
- W4320079976 crossrefType "journal-article" @default.
- W4320079976 hasAuthorship W4320079976A5027616515 @default.
- W4320079976 hasBestOaLocation W43200799761 @default.
- W4320079976 hasConcept C111919701 @default.
- W4320079976 hasConcept C119857082 @default.
- W4320079976 hasConcept C124101348 @default.
- W4320079976 hasConcept C154945302 @default.
- W4320079976 hasConcept C199360897 @default.
- W4320079976 hasConcept C2522767166 @default.
- W4320079976 hasConcept C2778572836 @default.
- W4320079976 hasConcept C2781215313 @default.
- W4320079976 hasConcept C41008148 @default.
- W4320079976 hasConcept C43364308 @default.
- W4320079976 hasConcept C75684735 @default.
- W4320079976 hasConcept C77088390 @default.
- W4320079976 hasConceptScore W4320079976C111919701 @default.
- W4320079976 hasConceptScore W4320079976C119857082 @default.
- W4320079976 hasConceptScore W4320079976C124101348 @default.
- W4320079976 hasConceptScore W4320079976C154945302 @default.
- W4320079976 hasConceptScore W4320079976C199360897 @default.
- W4320079976 hasConceptScore W4320079976C2522767166 @default.
- W4320079976 hasConceptScore W4320079976C2778572836 @default.
- W4320079976 hasConceptScore W4320079976C2781215313 @default.
- W4320079976 hasConceptScore W4320079976C41008148 @default.
- W4320079976 hasConceptScore W4320079976C43364308 @default.
- W4320079976 hasConceptScore W4320079976C75684735 @default.
- W4320079976 hasConceptScore W4320079976C77088390 @default.
- W4320079976 hasLocation W43200799761 @default.
- W4320079976 hasOpenAccess W4320079976 @default.
- W4320079976 hasPrimaryLocation W43200799761 @default.
- W4320079976 hasRelatedWork W2545366524 @default.
- W4320079976 hasRelatedWork W2769430831 @default.
- W4320079976 hasRelatedWork W2790778417 @default.
- W4320079976 hasRelatedWork W2803295405 @default.
- W4320079976 hasRelatedWork W2810431902 @default.
- W4320079976 hasRelatedWork W3008487931 @default.
- W4320079976 hasRelatedWork W3027515818 @default.
- W4320079976 hasRelatedWork W3211874991 @default.
- W4320079976 hasRelatedWork W4297540011 @default.
- W4320079976 hasRelatedWork W4386071444 @default.
- W4320079976 isParatext "false" @default.
- W4320079976 isRetracted "false" @default.
- W4320079976 workType "article" @default.