Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320081531> ?p ?o ?g. }
- W4320081531 endingPage "1927" @default.
- W4320081531 startingPage "1909" @default.
- W4320081531 abstract "The accurate prediction of soybean yield is of great significance for agricultural production, monitoring and early warning. Although previous studies have used machine learning algorithms to predict soybean yield based on meteorological data, it is not clear how different models can be used to effectively separate soybean meteorological yield from soybean yield in various regions. In addition, comprehensively integrating the advantages of various machine learning algorithms to improve the prediction accuracy through ensemble learning algorithms has not been studied in depth. This study used and analyzed various daily meteorological data and soybean yield data from 173 county-level administrative regions and meteorological stations in two principal soybean planting areas in China (Northeast China and the Huang–Huai region), covering 34 years. Three effective machine learning algorithms (K-nearest neighbor, random forest, and support vector regression) were adopted as the base-models to establish a high-precision and highly-reliable soybean meteorological yield prediction model based on the stacking ensemble learning framework. The model’s generalizability was further improved through 5-fold cross-validation, and the model was optimized by principal component analysis and hyperparametric optimization. The accuracy of the model was evaluated by using the five-year sliding prediction and four regression indicators of the 173 counties, which showed that the stacking model has higher accuracy and stronger robustness. The 5-year sliding estimations of soybean yield based on the stacking model in 173 counties showed that the prediction effect can reflect the spatiotemporal distribution of soybean yield in detail, and the mean absolute percentage error (MAPE) was less than 5%. The stacking prediction model of soybean meteorological yield provides a new approach for accurately predicting soybean yield." @default.
- W4320081531 created "2023-02-12" @default.
- W4320081531 creator A5000591700 @default.
- W4320081531 creator A5018676576 @default.
- W4320081531 creator A5020818276 @default.
- W4320081531 creator A5064226396 @default.
- W4320081531 creator A5066376222 @default.
- W4320081531 creator A5072330633 @default.
- W4320081531 date "2023-06-01" @default.
- W4320081531 modified "2023-10-16" @default.
- W4320081531 title "Ensemble learning prediction of soybean yields in China based on meteorological data" @default.
- W4320081531 cites W1220040716 @default.
- W4320081531 cites W1876629246 @default.
- W4320081531 cites W1990537262 @default.
- W4320081531 cites W1994654959 @default.
- W4320081531 cites W2088563154 @default.
- W4320081531 cites W2094790637 @default.
- W4320081531 cites W2122111042 @default.
- W4320081531 cites W2129832613 @default.
- W4320081531 cites W2319081540 @default.
- W4320081531 cites W2462571854 @default.
- W4320081531 cites W2510620627 @default.
- W4320081531 cites W2567073597 @default.
- W4320081531 cites W2750622950 @default.
- W4320081531 cites W2789353819 @default.
- W4320081531 cites W2791138313 @default.
- W4320081531 cites W2793706759 @default.
- W4320081531 cites W2794063637 @default.
- W4320081531 cites W2806390469 @default.
- W4320081531 cites W2810045082 @default.
- W4320081531 cites W28412257 @default.
- W4320081531 cites W2885770726 @default.
- W4320081531 cites W2889314625 @default.
- W4320081531 cites W2889564091 @default.
- W4320081531 cites W2894325618 @default.
- W4320081531 cites W2909824655 @default.
- W4320081531 cites W2911964244 @default.
- W4320081531 cites W2920027818 @default.
- W4320081531 cites W2938007559 @default.
- W4320081531 cites W2944794516 @default.
- W4320081531 cites W2979666105 @default.
- W4320081531 cites W2998688735 @default.
- W4320081531 cites W3007481233 @default.
- W4320081531 cites W3011049202 @default.
- W4320081531 cites W3011112218 @default.
- W4320081531 cites W3015083507 @default.
- W4320081531 cites W3026556562 @default.
- W4320081531 cites W3034431953 @default.
- W4320081531 cites W3035961604 @default.
- W4320081531 cites W3037968153 @default.
- W4320081531 cites W3041944906 @default.
- W4320081531 cites W3042880617 @default.
- W4320081531 cites W3075496779 @default.
- W4320081531 cites W3080379727 @default.
- W4320081531 cites W3081700767 @default.
- W4320081531 cites W3090312217 @default.
- W4320081531 cites W3093610374 @default.
- W4320081531 cites W3095829078 @default.
- W4320081531 cites W3122351669 @default.
- W4320081531 cites W3130459830 @default.
- W4320081531 cites W3135871359 @default.
- W4320081531 cites W3138886979 @default.
- W4320081531 cites W3174823696 @default.
- W4320081531 cites W3177413826 @default.
- W4320081531 cites W3177533048 @default.
- W4320081531 cites W3177704259 @default.
- W4320081531 cites W3178466514 @default.
- W4320081531 cites W3198376164 @default.
- W4320081531 cites W3204021295 @default.
- W4320081531 cites W3208946098 @default.
- W4320081531 cites W3209906348 @default.
- W4320081531 cites W3213971514 @default.
- W4320081531 cites W3217019998 @default.
- W4320081531 cites W3217216724 @default.
- W4320081531 cites W4200090279 @default.
- W4320081531 cites W4200257808 @default.
- W4320081531 cites W4200331542 @default.
- W4320081531 cites W4200481565 @default.
- W4320081531 cites W4206238440 @default.
- W4320081531 cites W4206381465 @default.
- W4320081531 cites W4206969276 @default.
- W4320081531 cites W4210710758 @default.
- W4320081531 cites W4214860529 @default.
- W4320081531 cites W4220677561 @default.
- W4320081531 cites W4220872785 @default.
- W4320081531 cites W4229040537 @default.
- W4320081531 cites W4239510810 @default.
- W4320081531 cites W4255883500 @default.
- W4320081531 cites W4280531499 @default.
- W4320081531 cites W4281792875 @default.
- W4320081531 doi "https://doi.org/10.1016/j.jia.2023.02.011" @default.
- W4320081531 hasPublicationYear "2023" @default.
- W4320081531 type Work @default.
- W4320081531 citedByCount "1" @default.
- W4320081531 countsByYear W43200815312023 @default.
- W4320081531 crossrefType "journal-article" @default.
- W4320081531 hasAuthorship W4320081531A5000591700 @default.
- W4320081531 hasAuthorship W4320081531A5018676576 @default.