Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320085864> ?p ?o ?g. }
- W4320085864 endingPage "116780" @default.
- W4320085864 startingPage "116780" @default.
- W4320085864 abstract "Having sufficient and qualified datasets is of paramount importance in terms of understanding the internal dynamics of the nature-related phenomenon. Given the necessity to maintain the completeness of the datasets, this study introduced a novel technique containing the implementation of machine learning algorithms and a meta-heuristic optimization algorithm for imputing the gaps encountered in measurements of solar radiation which is one of the crucial meteorological variables in terms of not only climate dynamics but also energy technologies. To accomplish this aim, four different gap sizes, i.e., 5 %, 10 %, 20 %, and 30 %, have synthetically been constituted and the applicability of the extreme gradient boosting (XGBoost) configured by the differential evolution (DE) was examined for each gap size. The corresponding model was benchmarked with conventional interpolation techniques (i.e., linear and spline optimizations) and other widely applied ML algorithms (i.e., random forest and multivariate adaptive regression splines). A multi-perspective input selection strategy was considered to model the missing values based on correlation coefficients under three scenarios encompassing a total of 14 different models. The results revealed that the XGBoost-DE model generated with the solar radiation measurements of neighboring stations was found as the best-performed model in all gap sizes, i.e., 5 % (NSE: 0.950; KGE: 0.967), 10 % (NSE:0.934; KGE: 0.962), and 30 % (NSE: 0.939; KGE: 0.957), but 20 % which the highest accuracy was obtained with the RF (NSE: 0.944; KGE: 0.966). On the other hand, the interpolation techniques had the lowest accuracies among their counterparts in imputation attempts with respect to all gap size alternatives." @default.
- W4320085864 created "2023-02-12" @default.
- W4320085864 creator A5055558805 @default.
- W4320085864 creator A5058133933 @default.
- W4320085864 creator A5064405823 @default.
- W4320085864 date "2023-03-01" @default.
- W4320085864 modified "2023-10-04" @default.
- W4320085864 title "Developing a novel approach for missing data imputation of solar radiation: A hybrid differential evolution algorithm based eXtreme gradient boosting model" @default.
- W4320085864 cites W1595159159 @default.
- W4320085864 cites W1967697497 @default.
- W4320085864 cites W1985479415 @default.
- W4320085864 cites W1992093990 @default.
- W4320085864 cites W2033904036 @default.
- W4320085864 cites W2040309157 @default.
- W4320085864 cites W2051384456 @default.
- W4320085864 cites W2052076015 @default.
- W4320085864 cites W2056973994 @default.
- W4320085864 cites W2066046820 @default.
- W4320085864 cites W2085103107 @default.
- W4320085864 cites W2095540339 @default.
- W4320085864 cites W2107562869 @default.
- W4320085864 cites W2136691316 @default.
- W4320085864 cites W2138763184 @default.
- W4320085864 cites W2161003841 @default.
- W4320085864 cites W2162313689 @default.
- W4320085864 cites W2222340752 @default.
- W4320085864 cites W2277255905 @default.
- W4320085864 cites W2480680997 @default.
- W4320085864 cites W2512516613 @default.
- W4320085864 cites W2522545446 @default.
- W4320085864 cites W2593356352 @default.
- W4320085864 cites W2594027828 @default.
- W4320085864 cites W2761223525 @default.
- W4320085864 cites W2763133679 @default.
- W4320085864 cites W2785049499 @default.
- W4320085864 cites W2803663262 @default.
- W4320085864 cites W2897020959 @default.
- W4320085864 cites W2904440514 @default.
- W4320085864 cites W2911964244 @default.
- W4320085864 cites W2915528947 @default.
- W4320085864 cites W2917654718 @default.
- W4320085864 cites W2935838819 @default.
- W4320085864 cites W2939354124 @default.
- W4320085864 cites W3035998732 @default.
- W4320085864 cites W3036516195 @default.
- W4320085864 cites W3102476541 @default.
- W4320085864 cites W3110443213 @default.
- W4320085864 cites W3124584258 @default.
- W4320085864 cites W3136604820 @default.
- W4320085864 cites W3168023116 @default.
- W4320085864 cites W3175281259 @default.
- W4320085864 cites W3198148990 @default.
- W4320085864 cites W3198955447 @default.
- W4320085864 cites W3208411384 @default.
- W4320085864 cites W3208642063 @default.
- W4320085864 cites W3215740878 @default.
- W4320085864 cites W3216168529 @default.
- W4320085864 cites W4200531281 @default.
- W4320085864 cites W4200568502 @default.
- W4320085864 cites W4205450262 @default.
- W4320085864 cites W4206698150 @default.
- W4320085864 cites W4210353292 @default.
- W4320085864 cites W4220698020 @default.
- W4320085864 cites W4224451672 @default.
- W4320085864 cites W4239576223 @default.
- W4320085864 cites W4280564806 @default.
- W4320085864 cites W4280642214 @default.
- W4320085864 cites W4281688654 @default.
- W4320085864 cites W4281789691 @default.
- W4320085864 cites W4282004481 @default.
- W4320085864 cites W4282840342 @default.
- W4320085864 cites W4283377079 @default.
- W4320085864 cites W4283646896 @default.
- W4320085864 cites W4284990084 @default.
- W4320085864 cites W4294553842 @default.
- W4320085864 cites W4297896097 @default.
- W4320085864 cites W4300717110 @default.
- W4320085864 cites W4309081327 @default.
- W4320085864 cites W4310016969 @default.
- W4320085864 cites W77069315 @default.
- W4320085864 doi "https://doi.org/10.1016/j.enconman.2023.116780" @default.
- W4320085864 hasPublicationYear "2023" @default.
- W4320085864 type Work @default.
- W4320085864 citedByCount "3" @default.
- W4320085864 countsByYear W43200858642023 @default.
- W4320085864 crossrefType "journal-article" @default.
- W4320085864 hasAuthorship W4320085864A5055558805 @default.
- W4320085864 hasAuthorship W4320085864A5058133933 @default.
- W4320085864 hasAuthorship W4320085864A5064405823 @default.
- W4320085864 hasConcept C11413529 @default.
- W4320085864 hasConcept C119857082 @default.
- W4320085864 hasConcept C169258074 @default.
- W4320085864 hasConcept C33923547 @default.
- W4320085864 hasConcept C41008148 @default.
- W4320085864 hasConcept C46686674 @default.
- W4320085864 hasConcept C58041806 @default.
- W4320085864 hasConcept C70153297 @default.
- W4320085864 hasConcept C74750220 @default.