Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320147163> ?p ?o ?g. }
- W4320147163 abstract "To create and validate a model for predicting septic or hypovolemic shock from easily obtainable variables collected from patients at admission to an intensive care unit.A predictive modeling study with concurrent cohort data was conducted in a hospital in the interior of northeastern Brazil. Patients aged 18 years or older who were not using vasoactive drugs on the day of admission and were hospitalized from November 2020 to July 2021 were included. The Decision Tree, Random Forest, AdaBoost, Gradient Boosting and XGBoost classification algorithms were tested for use in building the model. The validation method used was k-fold cross validation. The evaluation metrics used were recall, precision and area under the Receiver Operating Characteristic curve.A total of 720 patients were used to create and validate the model. The models showed high predictive capacity with areas under the Receiver Operating Characteristic curve of 0.979; 0.999; 0.980; 0.998 and 1.00 for the Decision Tree, Random Forest, AdaBoost, Gradient Boosting and XGBoost algorithms, respectively.The predictive model created and validated showed a high ability to predict septic and hypovolemic shock from the time of admission of patients to the intensive care unit.Criar e validar um modelo de predição de choque séptico ou hipovolêmico a partir de variáveis de fácil obtenção coletadas na admissão de pacientes internados em uma unidade de terapia intensiva.Estudo de modelagem preditiva com dados de coorte concorrente realizada em um hospital do interior do nordeste brasileiro. Foram incluídos pacientes com 18 anos ou mais sem uso de droga vasoativa no dia da admissão e que foram internados entre novembro de 2020 e julho de 2021. Foram testados os algoritmos de classificação do tipo Decision Tree, Random Forest, AdaBoost, Gradient Boosting e XGBoost para a construção do modelo. O método de validação utilizado foi o k-fold cross validation. As métricas de avaliação utilizadas foram recall, precisão e área sob a curva Receiver Operating Characteristic.Foram utilizados 720 pacientes para criação e validação do modelo. Os modelos apresentaram alta capacidade preditiva com área sob a curva Receiver Operating Characteristic de 0,979; 0,999; 0,980; 0,998 e 1,00 para os algoritmos de Decision Tree, Random Forest, AdaBoost, Gradient Boosting e XGBoost, respectivamente.O modelo preditivo criado e validado apresentou elevada capacidade de predição do choque séptico e hipovolêmico desde o momento da admissão de pacientes na unidade de terapia intensiva." @default.
- W4320147163 created "2023-02-13" @default.
- W4320147163 creator A5013355853 @default.
- W4320147163 creator A5015385418 @default.
- W4320147163 creator A5017435524 @default.
- W4320147163 creator A5020503450 @default.
- W4320147163 creator A5020728019 @default.
- W4320147163 creator A5038266199 @default.
- W4320147163 creator A5042004118 @default.
- W4320147163 creator A5045529056 @default.
- W4320147163 creator A5048391029 @default.
- W4320147163 creator A5056698494 @default.
- W4320147163 creator A5073897471 @default.
- W4320147163 date "2022-01-01" @default.
- W4320147163 modified "2023-09-29" @default.
- W4320147163 title "Predição de choque séptico e hipovolêmico em pacientes de unidade de terapia intensiva com o uso de machine learning" @default.
- W4320147163 cites W2122580238 @default.
- W4320147163 cites W2278600110 @default.
- W4320147163 cites W2561884109 @default.
- W4320147163 cites W2724851251 @default.
- W4320147163 cites W2761383257 @default.
- W4320147163 cites W2772743912 @default.
- W4320147163 cites W2790359941 @default.
- W4320147163 cites W2800765792 @default.
- W4320147163 cites W2808829764 @default.
- W4320147163 cites W2884505502 @default.
- W4320147163 cites W2901929987 @default.
- W4320147163 cites W2912904466 @default.
- W4320147163 cites W2955053048 @default.
- W4320147163 cites W2967525737 @default.
- W4320147163 cites W2968919852 @default.
- W4320147163 cites W2981428249 @default.
- W4320147163 cites W2982105985 @default.
- W4320147163 cites W3092755024 @default.
- W4320147163 cites W3095038472 @default.
- W4320147163 cites W3102844081 @default.
- W4320147163 cites W3120766804 @default.
- W4320147163 cites W3165550398 @default.
- W4320147163 doi "https://doi.org/10.5935/0103-507x.20220280-pt" @default.
- W4320147163 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36888828" @default.
- W4320147163 hasPublicationYear "2022" @default.
- W4320147163 type Work @default.
- W4320147163 citedByCount "0" @default.
- W4320147163 crossrefType "journal-article" @default.
- W4320147163 hasAuthorship W4320147163A5013355853 @default.
- W4320147163 hasAuthorship W4320147163A5015385418 @default.
- W4320147163 hasAuthorship W4320147163A5017435524 @default.
- W4320147163 hasAuthorship W4320147163A5020503450 @default.
- W4320147163 hasAuthorship W4320147163A5020728019 @default.
- W4320147163 hasAuthorship W4320147163A5038266199 @default.
- W4320147163 hasAuthorship W4320147163A5042004118 @default.
- W4320147163 hasAuthorship W4320147163A5045529056 @default.
- W4320147163 hasAuthorship W4320147163A5048391029 @default.
- W4320147163 hasAuthorship W4320147163A5056698494 @default.
- W4320147163 hasAuthorship W4320147163A5073897471 @default.
- W4320147163 hasBestOaLocation W43201471631 @default.
- W4320147163 hasConcept C119857082 @default.
- W4320147163 hasConcept C12267149 @default.
- W4320147163 hasConcept C126322002 @default.
- W4320147163 hasConcept C141404830 @default.
- W4320147163 hasConcept C169258074 @default.
- W4320147163 hasConcept C177713679 @default.
- W4320147163 hasConcept C194828623 @default.
- W4320147163 hasConcept C2776376669 @default.
- W4320147163 hasConcept C2777628635 @default.
- W4320147163 hasConcept C2778384902 @default.
- W4320147163 hasConcept C2987404301 @default.
- W4320147163 hasConcept C41008148 @default.
- W4320147163 hasConcept C46686674 @default.
- W4320147163 hasConcept C58471807 @default.
- W4320147163 hasConcept C70153297 @default.
- W4320147163 hasConcept C71924100 @default.
- W4320147163 hasConcept C84525736 @default.
- W4320147163 hasConceptScore W4320147163C119857082 @default.
- W4320147163 hasConceptScore W4320147163C12267149 @default.
- W4320147163 hasConceptScore W4320147163C126322002 @default.
- W4320147163 hasConceptScore W4320147163C141404830 @default.
- W4320147163 hasConceptScore W4320147163C169258074 @default.
- W4320147163 hasConceptScore W4320147163C177713679 @default.
- W4320147163 hasConceptScore W4320147163C194828623 @default.
- W4320147163 hasConceptScore W4320147163C2776376669 @default.
- W4320147163 hasConceptScore W4320147163C2777628635 @default.
- W4320147163 hasConceptScore W4320147163C2778384902 @default.
- W4320147163 hasConceptScore W4320147163C2987404301 @default.
- W4320147163 hasConceptScore W4320147163C41008148 @default.
- W4320147163 hasConceptScore W4320147163C46686674 @default.
- W4320147163 hasConceptScore W4320147163C58471807 @default.
- W4320147163 hasConceptScore W4320147163C70153297 @default.
- W4320147163 hasConceptScore W4320147163C71924100 @default.
- W4320147163 hasConceptScore W4320147163C84525736 @default.
- W4320147163 hasIssue "4" @default.
- W4320147163 hasLocation W43201471631 @default.
- W4320147163 hasLocation W43201471632 @default.
- W4320147163 hasOpenAccess W4320147163 @default.
- W4320147163 hasPrimaryLocation W43201471631 @default.
- W4320147163 hasRelatedWork W3100297620 @default.
- W4320147163 hasRelatedWork W3126325819 @default.
- W4320147163 hasRelatedWork W3204641204 @default.
- W4320147163 hasRelatedWork W3211193619 @default.
- W4320147163 hasRelatedWork W4206556944 @default.