Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320149612> ?p ?o ?g. }
- W4320149612 endingPage "111" @default.
- W4320149612 startingPage "91" @default.
- W4320149612 abstract "Although numerous deep neural networks have been explored for aircraft detection using synthetic aperture radar (SAR) imagery, limited work has been conducted with their performance comparison, since different neural networks are designed and tested using different datasets and measured with different metrics. In this book chapter, we compare the performance of six popular deep neural networks for aircraft detection from SAR imagery, to verify their performance in tackling the scale heterogeneity, the background interference and the speckle noise challenges in the SAR-based aircraft detection. We choose SAR images acquired from three major airports in China as the testing datasets, due to the lack of ubiquitously agreed SAR benchmark dataset in aircraft detection. This comparison work does not only confirm the value of deep learning in aircraft detection but also highlights the advantages and disadvantages of these techniques, which paves the path for the design and development of workflow guidance in SAR-based aircraft detection using deep neural networks. It also serves as a baseline for future deep learning comparison in remote sensing data analytics, so as to facilitate the domain knowledge integration and design of innovative aircraft detection deep learning techniques." @default.
- W4320149612 created "2023-02-13" @default.
- W4320149612 creator A5003772516 @default.
- W4320149612 creator A5013545015 @default.
- W4320149612 creator A5018160014 @default.
- W4320149612 creator A5043296622 @default.
- W4320149612 creator A5055682171 @default.
- W4320149612 creator A5060755517 @default.
- W4320149612 creator A5067530491 @default.
- W4320149612 creator A5081112851 @default.
- W4320149612 creator A5086754208 @default.
- W4320149612 date "2022-01-01" @default.
- W4320149612 modified "2023-09-27" @default.
- W4320149612 title "A Comparison of Deep Neural Network Architectures in Aircraft Detection from SAR Imagery" @default.
- W4320149612 cites W2051192354 @default.
- W4320149612 cites W2126096326 @default.
- W4320149612 cites W2144506857 @default.
- W4320149612 cites W2152433379 @default.
- W4320149612 cites W2570343428 @default.
- W4320149612 cites W2782522152 @default.
- W4320149612 cites W2793267713 @default.
- W4320149612 cites W2801973225 @default.
- W4320149612 cites W2884585870 @default.
- W4320149612 cites W2892123021 @default.
- W4320149612 cites W2901756989 @default.
- W4320149612 cites W2940726923 @default.
- W4320149612 cites W2954537798 @default.
- W4320149612 cites W2963037989 @default.
- W4320149612 cites W2963857746 @default.
- W4320149612 cites W2981731882 @default.
- W4320149612 cites W3012991496 @default.
- W4320149612 cites W3018998681 @default.
- W4320149612 cites W3033131612 @default.
- W4320149612 cites W3034971973 @default.
- W4320149612 cites W3048658198 @default.
- W4320149612 cites W3081523786 @default.
- W4320149612 cites W3089074938 @default.
- W4320149612 cites W3101684954 @default.
- W4320149612 cites W3104899156 @default.
- W4320149612 cites W3135493063 @default.
- W4320149612 cites W3151154047 @default.
- W4320149612 cites W3159196909 @default.
- W4320149612 cites W3180134609 @default.
- W4320149612 cites W3185190852 @default.
- W4320149612 cites W3201655970 @default.
- W4320149612 cites W4200032904 @default.
- W4320149612 cites W4210598935 @default.
- W4320149612 cites W4211248936 @default.
- W4320149612 cites W4220837851 @default.
- W4320149612 cites W4224229924 @default.
- W4320149612 doi "https://doi.org/10.1007/978-3-031-21225-3_5" @default.
- W4320149612 hasPublicationYear "2022" @default.
- W4320149612 type Work @default.
- W4320149612 citedByCount "0" @default.
- W4320149612 crossrefType "book-chapter" @default.
- W4320149612 hasAuthorship W4320149612A5003772516 @default.
- W4320149612 hasAuthorship W4320149612A5013545015 @default.
- W4320149612 hasAuthorship W4320149612A5018160014 @default.
- W4320149612 hasAuthorship W4320149612A5043296622 @default.
- W4320149612 hasAuthorship W4320149612A5055682171 @default.
- W4320149612 hasAuthorship W4320149612A5060755517 @default.
- W4320149612 hasAuthorship W4320149612A5067530491 @default.
- W4320149612 hasAuthorship W4320149612A5081112851 @default.
- W4320149612 hasAuthorship W4320149612A5086754208 @default.
- W4320149612 hasConcept C102290492 @default.
- W4320149612 hasConcept C108583219 @default.
- W4320149612 hasConcept C117623542 @default.
- W4320149612 hasConcept C119857082 @default.
- W4320149612 hasConcept C153180895 @default.
- W4320149612 hasConcept C154945302 @default.
- W4320149612 hasConcept C177212765 @default.
- W4320149612 hasConcept C180940675 @default.
- W4320149612 hasConcept C185798385 @default.
- W4320149612 hasConcept C205649164 @default.
- W4320149612 hasConcept C2776151529 @default.
- W4320149612 hasConcept C2984842247 @default.
- W4320149612 hasConcept C41008148 @default.
- W4320149612 hasConcept C50644808 @default.
- W4320149612 hasConcept C58640448 @default.
- W4320149612 hasConcept C62649853 @default.
- W4320149612 hasConcept C77088390 @default.
- W4320149612 hasConcept C87360688 @default.
- W4320149612 hasConceptScore W4320149612C102290492 @default.
- W4320149612 hasConceptScore W4320149612C108583219 @default.
- W4320149612 hasConceptScore W4320149612C117623542 @default.
- W4320149612 hasConceptScore W4320149612C119857082 @default.
- W4320149612 hasConceptScore W4320149612C153180895 @default.
- W4320149612 hasConceptScore W4320149612C154945302 @default.
- W4320149612 hasConceptScore W4320149612C177212765 @default.
- W4320149612 hasConceptScore W4320149612C180940675 @default.
- W4320149612 hasConceptScore W4320149612C185798385 @default.
- W4320149612 hasConceptScore W4320149612C205649164 @default.
- W4320149612 hasConceptScore W4320149612C2776151529 @default.
- W4320149612 hasConceptScore W4320149612C2984842247 @default.
- W4320149612 hasConceptScore W4320149612C41008148 @default.
- W4320149612 hasConceptScore W4320149612C50644808 @default.
- W4320149612 hasConceptScore W4320149612C58640448 @default.
- W4320149612 hasConceptScore W4320149612C62649853 @default.