Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320152455> ?p ?o ?g. }
- W4320152455 endingPage "53" @default.
- W4320152455 startingPage "35" @default.
- W4320152455 abstract "One of the current challenges in two-phase flow is the characterization of phase inversion in the oil and gas industry. Empirical and semi-empirical models have been developed by several researchers, allowing limited predictions through correlations. Recently, models obtained with application of artificial intelligence techniques, such as artificial neural networks, have become a promising alternative to identify flow patterns and their transition boundaries. This work's aim is to develop a hybrid model that identifies the phase inversion transition from oil-in-water to water-in-oil flow in vertical pipes. It is based on recent models found in the literature and logistic regression models based on artificial neural networks, for which information was obtained from the literature. The proposed hybrid model achieved an RMSE ≈ 0.0834, thus being an efficient contribution to the identification of phase inversion in oil-water two-phase flow." @default.
- W4320152455 created "2023-02-13" @default.
- W4320152455 creator A5013493285 @default.
- W4320152455 creator A5013549112 @default.
- W4320152455 creator A5047454632 @default.
- W4320152455 creator A5048813592 @default.
- W4320152455 creator A5056067594 @default.
- W4320152455 date "2023-01-01" @default.
- W4320152455 modified "2023-09-27" @default.
- W4320152455 title "HYBRID MACHINE LEARNING MODEL APPLIED TO PHASE INVERSION PREDICTION IN LIQUID-LIQUID PIPE FLOW" @default.
- W4320152455 cites W1170214759 @default.
- W4320152455 cites W1535736950 @default.
- W4320152455 cites W1970776103 @default.
- W4320152455 cites W1975375657 @default.
- W4320152455 cites W1981390624 @default.
- W4320152455 cites W1982240355 @default.
- W4320152455 cites W1986375721 @default.
- W4320152455 cites W1988999802 @default.
- W4320152455 cites W2010258271 @default.
- W4320152455 cites W2012770718 @default.
- W4320152455 cites W2026024798 @default.
- W4320152455 cites W2039806265 @default.
- W4320152455 cites W2040877251 @default.
- W4320152455 cites W2048115715 @default.
- W4320152455 cites W2065040892 @default.
- W4320152455 cites W2066477610 @default.
- W4320152455 cites W2068423497 @default.
- W4320152455 cites W2087952667 @default.
- W4320152455 cites W2090811425 @default.
- W4320152455 cites W2094981920 @default.
- W4320152455 cites W2261525379 @default.
- W4320152455 cites W2263411362 @default.
- W4320152455 cites W2466096388 @default.
- W4320152455 cites W2524247549 @default.
- W4320152455 cites W2535292676 @default.
- W4320152455 cites W2565419829 @default.
- W4320152455 cites W2738020443 @default.
- W4320152455 cites W2759052113 @default.
- W4320152455 cites W2789289184 @default.
- W4320152455 cites W2891986072 @default.
- W4320152455 cites W2943924990 @default.
- W4320152455 cites W2944387813 @default.
- W4320152455 cites W2981218348 @default.
- W4320152455 cites W2997797281 @default.
- W4320152455 cites W3093834139 @default.
- W4320152455 cites W3157180574 @default.
- W4320152455 cites W4210792645 @default.
- W4320152455 cites W74772203 @default.
- W4320152455 cites W952166901 @default.
- W4320152455 doi "https://doi.org/10.1615/multscientechn.2022046139" @default.
- W4320152455 hasPublicationYear "2023" @default.
- W4320152455 type Work @default.
- W4320152455 citedByCount "0" @default.
- W4320152455 crossrefType "journal-article" @default.
- W4320152455 hasAuthorship W4320152455A5013493285 @default.
- W4320152455 hasAuthorship W4320152455A5013549112 @default.
- W4320152455 hasAuthorship W4320152455A5047454632 @default.
- W4320152455 hasAuthorship W4320152455A5048813592 @default.
- W4320152455 hasAuthorship W4320152455A5056067594 @default.
- W4320152455 hasConcept C109007969 @default.
- W4320152455 hasConcept C119857082 @default.
- W4320152455 hasConcept C121332964 @default.
- W4320152455 hasConcept C127313418 @default.
- W4320152455 hasConcept C133199616 @default.
- W4320152455 hasConcept C144308804 @default.
- W4320152455 hasConcept C151730666 @default.
- W4320152455 hasConcept C154945302 @default.
- W4320152455 hasConcept C171431902 @default.
- W4320152455 hasConcept C185592680 @default.
- W4320152455 hasConcept C1893757 @default.
- W4320152455 hasConcept C2779990667 @default.
- W4320152455 hasConcept C38349280 @default.
- W4320152455 hasConcept C41008148 @default.
- W4320152455 hasConcept C41625074 @default.
- W4320152455 hasConcept C44154836 @default.
- W4320152455 hasConcept C50644808 @default.
- W4320152455 hasConcept C55493867 @default.
- W4320152455 hasConcept C57879066 @default.
- W4320152455 hasConcept C78762247 @default.
- W4320152455 hasConceptScore W4320152455C109007969 @default.
- W4320152455 hasConceptScore W4320152455C119857082 @default.
- W4320152455 hasConceptScore W4320152455C121332964 @default.
- W4320152455 hasConceptScore W4320152455C127313418 @default.
- W4320152455 hasConceptScore W4320152455C133199616 @default.
- W4320152455 hasConceptScore W4320152455C144308804 @default.
- W4320152455 hasConceptScore W4320152455C151730666 @default.
- W4320152455 hasConceptScore W4320152455C154945302 @default.
- W4320152455 hasConceptScore W4320152455C171431902 @default.
- W4320152455 hasConceptScore W4320152455C185592680 @default.
- W4320152455 hasConceptScore W4320152455C1893757 @default.
- W4320152455 hasConceptScore W4320152455C2779990667 @default.
- W4320152455 hasConceptScore W4320152455C38349280 @default.
- W4320152455 hasConceptScore W4320152455C41008148 @default.
- W4320152455 hasConceptScore W4320152455C41625074 @default.
- W4320152455 hasConceptScore W4320152455C44154836 @default.
- W4320152455 hasConceptScore W4320152455C50644808 @default.
- W4320152455 hasConceptScore W4320152455C55493867 @default.
- W4320152455 hasConceptScore W4320152455C57879066 @default.