Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320168908> ?p ?o ?g. }
- W4320168908 endingPage "120688" @default.
- W4320168908 startingPage "120688" @default.
- W4320168908 abstract "The energy crises and environmental problem can be solved by using plug-in hybrid electric vehicles (PHEVs), the integration of large number of PHEVs with high control capabilities and storage can improve the distribution network flexibility. However, the optimal management of these vehicles in the presence of renewable energy resources (RESs) represents a big challenge that must be adopted, this can be accomplished in the form of microgrid (MG). Therefore, this paper proposes a new energy management strategy (EMS) incorporated bald eagle search (BES) optimizer for MG with RESs and PHEVs to regulate the generation of each unit. The considered devices installed in the MG are wind turbine (WT), photovoltaic (PV), micro turbine (MT), fuel cell (FC), storage battery, PHEVs, and grid. The problem is formulated as an optimization problem that aims at minimizing the total operating cost and mitigating the environmental pollutant emission. Two scenarios related to the operation of RESs are considered in addition to three charging modes of EVs which are uncoordinated, coordinated, and smart. The proposed BES-EMS is validated via conducting comparison to literature works of Fuzzy self-adaptive particle swarm optimizer (FSAPSO) and gravitational search and pattern search (GSA-PS) algorithm in addition to new programmed optimizers of Runge Kutta optimization (RUN), mountain gazelle optimizer (MGO), chef-based optimization algorithm (CBOA), beluga whale optimization (BWO), and dandelion optimizer (DO). Moreover, statistical tests of Friedman rank, ANOVA table, Wilcoxon rank, and Kruskal Wallis are conducted to assess the proposed BES-EMS. In scenario (1), the proposed BES outperformed all optimizers achieving the best operating cost and emission of 111.2518 €ct and 182.0741 kg respectively, the cost is saved by 57.66 % compared to GSA-PS while the emission is mitigated by 56.86 % compared to FSAPSO. In scenario (2), the proposed BES-EMS mitigated the cost and emission by 70.68 % and 51.78 % rather than GSA-PS and FSAPSO respectively. Moreover, in scenrio (3) the proposed approache saved the cost by 61.49 % and 67.29 % compared to GSA-PS during smart charging of PHEVs in normal and rated operations of RESs respectively. Furthermore, according to the Friedman rank test the proposed BES-EMS achieved the first rank with p-value of 2.1. The fetched results proved the robustness and competence of the proposed BES as an efficient energy management strategy for MG." @default.
- W4320168908 created "2023-02-13" @default.
- W4320168908 creator A5009060342 @default.
- W4320168908 date "2023-03-01" @default.
- W4320168908 modified "2023-10-01" @default.
- W4320168908 title "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles" @default.
- W4320168908 cites W1998038973 @default.
- W4320168908 cites W2114461427 @default.
- W4320168908 cites W2416744205 @default.
- W4320168908 cites W2793874403 @default.
- W4320168908 cites W2889766846 @default.
- W4320168908 cites W2897206375 @default.
- W4320168908 cites W2900920157 @default.
- W4320168908 cites W2911256795 @default.
- W4320168908 cites W2915446925 @default.
- W4320168908 cites W2915540884 @default.
- W4320168908 cites W2943597923 @default.
- W4320168908 cites W2950789589 @default.
- W4320168908 cites W2954876896 @default.
- W4320168908 cites W2966008950 @default.
- W4320168908 cites W2970863897 @default.
- W4320168908 cites W2997204347 @default.
- W4320168908 cites W3001108831 @default.
- W4320168908 cites W3011370988 @default.
- W4320168908 cites W3023465442 @default.
- W4320168908 cites W3025397688 @default.
- W4320168908 cites W3037006665 @default.
- W4320168908 cites W3039861954 @default.
- W4320168908 cites W3040074574 @default.
- W4320168908 cites W3048574899 @default.
- W4320168908 cites W3088493749 @default.
- W4320168908 cites W3102269721 @default.
- W4320168908 cites W3103354533 @default.
- W4320168908 cites W3103399825 @default.
- W4320168908 cites W3153539454 @default.
- W4320168908 cites W3154140628 @default.
- W4320168908 cites W3157620715 @default.
- W4320168908 cites W3160080145 @default.
- W4320168908 cites W3173906601 @default.
- W4320168908 cites W3175439632 @default.
- W4320168908 cites W3182424588 @default.
- W4320168908 cites W3185837465 @default.
- W4320168908 cites W3195546778 @default.
- W4320168908 cites W3215734418 @default.
- W4320168908 cites W4200298083 @default.
- W4320168908 cites W4206794808 @default.
- W4320168908 cites W4210800239 @default.
- W4320168908 cites W4286359162 @default.
- W4320168908 doi "https://doi.org/10.1016/j.apenergy.2023.120688" @default.
- W4320168908 hasPublicationYear "2023" @default.
- W4320168908 type Work @default.
- W4320168908 citedByCount "2" @default.
- W4320168908 countsByYear W43201689082023 @default.
- W4320168908 crossrefType "journal-article" @default.
- W4320168908 hasAuthorship W4320168908A5009060342 @default.
- W4320168908 hasConcept C105795698 @default.
- W4320168908 hasConcept C11413529 @default.
- W4320168908 hasConcept C119599485 @default.
- W4320168908 hasConcept C121332964 @default.
- W4320168908 hasConcept C127413603 @default.
- W4320168908 hasConcept C163258240 @default.
- W4320168908 hasConcept C171146098 @default.
- W4320168908 hasConcept C186370098 @default.
- W4320168908 hasConcept C188573790 @default.
- W4320168908 hasConcept C2776784348 @default.
- W4320168908 hasConcept C2781260460 @default.
- W4320168908 hasConcept C33923547 @default.
- W4320168908 hasConcept C41008148 @default.
- W4320168908 hasConcept C41291067 @default.
- W4320168908 hasConcept C44154836 @default.
- W4320168908 hasConcept C62520636 @default.
- W4320168908 hasConcept C73916439 @default.
- W4320168908 hasConcept C7817414 @default.
- W4320168908 hasConcept C85617194 @default.
- W4320168908 hasConceptScore W4320168908C105795698 @default.
- W4320168908 hasConceptScore W4320168908C11413529 @default.
- W4320168908 hasConceptScore W4320168908C119599485 @default.
- W4320168908 hasConceptScore W4320168908C121332964 @default.
- W4320168908 hasConceptScore W4320168908C127413603 @default.
- W4320168908 hasConceptScore W4320168908C163258240 @default.
- W4320168908 hasConceptScore W4320168908C171146098 @default.
- W4320168908 hasConceptScore W4320168908C186370098 @default.
- W4320168908 hasConceptScore W4320168908C188573790 @default.
- W4320168908 hasConceptScore W4320168908C2776784348 @default.
- W4320168908 hasConceptScore W4320168908C2781260460 @default.
- W4320168908 hasConceptScore W4320168908C33923547 @default.
- W4320168908 hasConceptScore W4320168908C41008148 @default.
- W4320168908 hasConceptScore W4320168908C41291067 @default.
- W4320168908 hasConceptScore W4320168908C44154836 @default.
- W4320168908 hasConceptScore W4320168908C62520636 @default.
- W4320168908 hasConceptScore W4320168908C73916439 @default.
- W4320168908 hasConceptScore W4320168908C7817414 @default.
- W4320168908 hasConceptScore W4320168908C85617194 @default.
- W4320168908 hasLocation W43201689081 @default.
- W4320168908 hasOpenAccess W4320168908 @default.
- W4320168908 hasPrimaryLocation W43201689081 @default.
- W4320168908 hasRelatedWork W2052056444 @default.
- W4320168908 hasRelatedWork W2068489520 @default.