Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320168968> ?p ?o ?g. }
- W4320168968 endingPage "107538" @default.
- W4320168968 startingPage "107538" @default.
- W4320168968 abstract "A novel defect-based fatigue damage model coupled with an optimized neural network is proposed for high-cycle fatigue prediction. Based on parametric studies and continuum damage mechanics, the defect-based fatigue damage evolution equation is derived, and the numerical simulation and fatigue damage computation are then implemented and validated. After that, more computations are performed to acquire a batch of reliable fatigue data, and the database is obtained. Finally, the architecture of the optimized neural network is established, and the predicted results are verified by experimental fatigue data. The proposed methodology works well for the fatigue analysis of casting alloys with surface defect." @default.
- W4320168968 created "2023-02-13" @default.
- W4320168968 creator A5016432351 @default.
- W4320168968 creator A5028155058 @default.
- W4320168968 creator A5033786271 @default.
- W4320168968 creator A5053331581 @default.
- W4320168968 creator A5060948634 @default.
- W4320168968 creator A5083994235 @default.
- W4320168968 creator A5088163104 @default.
- W4320168968 date "2023-05-01" @default.
- W4320168968 modified "2023-10-13" @default.
- W4320168968 title "A novel defect-based fatigue damage model coupled with an optimized neural network for high-cycle fatigue analysis of casting alloys with surface defect" @default.
- W4320168968 cites W1117310881 @default.
- W4320168968 cites W2011287185 @default.
- W4320168968 cites W2032007245 @default.
- W4320168968 cites W2033594474 @default.
- W4320168968 cites W2051212138 @default.
- W4320168968 cites W2076621893 @default.
- W4320168968 cites W2089400252 @default.
- W4320168968 cites W2621529708 @default.
- W4320168968 cites W2799585045 @default.
- W4320168968 cites W2970170361 @default.
- W4320168968 cites W2977462023 @default.
- W4320168968 cites W2990401948 @default.
- W4320168968 cites W2994973509 @default.
- W4320168968 cites W2995493955 @default.
- W4320168968 cites W2997213936 @default.
- W4320168968 cites W3004440501 @default.
- W4320168968 cites W3008890646 @default.
- W4320168968 cites W3025605929 @default.
- W4320168968 cites W3092611703 @default.
- W4320168968 cites W3093084577 @default.
- W4320168968 cites W3093658916 @default.
- W4320168968 cites W3171764157 @default.
- W4320168968 cites W3173340243 @default.
- W4320168968 cites W3186075706 @default.
- W4320168968 cites W3198557351 @default.
- W4320168968 cites W3200385514 @default.
- W4320168968 cites W3203154540 @default.
- W4320168968 cites W3205009387 @default.
- W4320168968 cites W3212858240 @default.
- W4320168968 cites W3215380826 @default.
- W4320168968 cites W4207016974 @default.
- W4320168968 cites W4210557940 @default.
- W4320168968 cites W4214754522 @default.
- W4320168968 cites W4214885488 @default.
- W4320168968 cites W4220717890 @default.
- W4320168968 cites W4220765484 @default.
- W4320168968 cites W4221103427 @default.
- W4320168968 cites W4281614863 @default.
- W4320168968 cites W4283462548 @default.
- W4320168968 cites W4290792035 @default.
- W4320168968 cites W4292622286 @default.
- W4320168968 cites W4297284537 @default.
- W4320168968 doi "https://doi.org/10.1016/j.ijfatigue.2023.107538" @default.
- W4320168968 hasPublicationYear "2023" @default.
- W4320168968 type Work @default.
- W4320168968 citedByCount "4" @default.
- W4320168968 countsByYear W43201689682023 @default.
- W4320168968 crossrefType "journal-article" @default.
- W4320168968 hasAuthorship W4320168968A5016432351 @default.
- W4320168968 hasAuthorship W4320168968A5028155058 @default.
- W4320168968 hasAuthorship W4320168968A5033786271 @default.
- W4320168968 hasAuthorship W4320168968A5053331581 @default.
- W4320168968 hasAuthorship W4320168968A5060948634 @default.
- W4320168968 hasAuthorship W4320168968A5083994235 @default.
- W4320168968 hasAuthorship W4320168968A5088163104 @default.
- W4320168968 hasConcept C105795698 @default.
- W4320168968 hasConcept C11413529 @default.
- W4320168968 hasConcept C117251300 @default.
- W4320168968 hasConcept C127413603 @default.
- W4320168968 hasConcept C131850400 @default.
- W4320168968 hasConcept C154945302 @default.
- W4320168968 hasConcept C16635281 @default.
- W4320168968 hasConcept C191897082 @default.
- W4320168968 hasConcept C192562407 @default.
- W4320168968 hasConcept C2985278600 @default.
- W4320168968 hasConcept C33923547 @default.
- W4320168968 hasConcept C41008148 @default.
- W4320168968 hasConcept C45374587 @default.
- W4320168968 hasConcept C50644808 @default.
- W4320168968 hasConcept C57341113 @default.
- W4320168968 hasConcept C66938386 @default.
- W4320168968 hasConceptScore W4320168968C105795698 @default.
- W4320168968 hasConceptScore W4320168968C11413529 @default.
- W4320168968 hasConceptScore W4320168968C117251300 @default.
- W4320168968 hasConceptScore W4320168968C127413603 @default.
- W4320168968 hasConceptScore W4320168968C131850400 @default.
- W4320168968 hasConceptScore W4320168968C154945302 @default.
- W4320168968 hasConceptScore W4320168968C16635281 @default.
- W4320168968 hasConceptScore W4320168968C191897082 @default.
- W4320168968 hasConceptScore W4320168968C192562407 @default.
- W4320168968 hasConceptScore W4320168968C2985278600 @default.
- W4320168968 hasConceptScore W4320168968C33923547 @default.
- W4320168968 hasConceptScore W4320168968C41008148 @default.
- W4320168968 hasConceptScore W4320168968C45374587 @default.
- W4320168968 hasConceptScore W4320168968C50644808 @default.
- W4320168968 hasConceptScore W4320168968C57341113 @default.