Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320170019> ?p ?o ?g. }
- W4320170019 endingPage "105905" @default.
- W4320170019 startingPage "105905" @default.
- W4320170019 abstract "Marine object detection has received an increasing amount of attention due to its enormous application potential in the field of marine engineering, Remotely Operated Vehicles, and Autonomous Underwater Vehicles. It has made substantial progress in generic object detection with the prevalent trend of deep learning in the past few years. However, marine object detection in natural scenes remains certainly an unsolved problem. The challenges stem from low visibility, small size, serious occlusion, and dense distribution. In this article, we attempt to address the marine object detection problem by presenting a clever joint attention-guided dual-subnet network that can jointly learn both image enhancement and object detection tasks for end-to-end training. JADSNet attains significant performance gains by comprising two subnetworks: an image enhancement subnet and a marine object detection subnet. Essentially, the marine object detection subnet is an extended feature pyramid network with a dual attention-guided module and a multi-term loss function. It takes RetinaNet as a backbone and is responsible for classifying and locating objects. In the image enhancement subnet, feature extraction layers are shared with the marine object detection subnet and a feature enhancement module is used. A multi-term loss function is introduced to reduce false detection and miss detection caused by the mutual occlusion of marine objects. We build a new Marine Object Detection (MOD) dataset that contains more than 25,000 train-val and 3000 test underwater images. The experimental findings demonstrate that our JADSNet realize notable performance and reach 74.41% mAP on the MOD dataset. We also verify that the JADSNet method can be applied to object detection in foggy weather and achieve 49.54% mAP on the foggy dataset." @default.
- W4320170019 created "2023-02-13" @default.
- W4320170019 creator A5062215535 @default.
- W4320170019 creator A5065208984 @default.
- W4320170019 creator A5066737978 @default.
- W4320170019 creator A5084554132 @default.
- W4320170019 date "2023-04-01" @default.
- W4320170019 modified "2023-10-03" @default.
- W4320170019 title "Joint image enhancement learning for marine object detection in natural scene" @default.
- W4320170019 cites W1536680647 @default.
- W4320170019 cites W1932624639 @default.
- W4320170019 cites W1976263166 @default.
- W4320170019 cites W2071196374 @default.
- W4320170019 cites W2102605133 @default.
- W4320170019 cites W2194775991 @default.
- W4320170019 cites W2216125271 @default.
- W4320170019 cites W2256362396 @default.
- W4320170019 cites W2343883807 @default.
- W4320170019 cites W2560445289 @default.
- W4320170019 cites W2565639579 @default.
- W4320170019 cites W2570343428 @default.
- W4320170019 cites W2748021867 @default.
- W4320170019 cites W2752782242 @default.
- W4320170019 cites W2779176852 @default.
- W4320170019 cites W2798898057 @default.
- W4320170019 cites W2896991173 @default.
- W4320170019 cites W2914663144 @default.
- W4320170019 cites W2924873663 @default.
- W4320170019 cites W2963037989 @default.
- W4320170019 cites W2963498646 @default.
- W4320170019 cites W2963681621 @default.
- W4320170019 cites W2963928582 @default.
- W4320170019 cites W2971483169 @default.
- W4320170019 cites W2991359031 @default.
- W4320170019 cites W3011408087 @default.
- W4320170019 cites W3011606420 @default.
- W4320170019 cites W3046887343 @default.
- W4320170019 cites W3099562471 @default.
- W4320170019 cites W3129419153 @default.
- W4320170019 cites W3138516171 @default.
- W4320170019 cites W3145601439 @default.
- W4320170019 cites W3158715390 @default.
- W4320170019 cites W3172507542 @default.
- W4320170019 cites W639708223 @default.
- W4320170019 doi "https://doi.org/10.1016/j.engappai.2023.105905" @default.
- W4320170019 hasPublicationYear "2023" @default.
- W4320170019 type Work @default.
- W4320170019 citedByCount "0" @default.
- W4320170019 crossrefType "journal-article" @default.
- W4320170019 hasAuthorship W4320170019A5062215535 @default.
- W4320170019 hasAuthorship W4320170019A5065208984 @default.
- W4320170019 hasAuthorship W4320170019A5066737978 @default.
- W4320170019 hasAuthorship W4320170019A5084554132 @default.
- W4320170019 hasConcept C111368507 @default.
- W4320170019 hasConcept C120665830 @default.
- W4320170019 hasConcept C121332964 @default.
- W4320170019 hasConcept C123403432 @default.
- W4320170019 hasConcept C127313418 @default.
- W4320170019 hasConcept C138885662 @default.
- W4320170019 hasConcept C153180895 @default.
- W4320170019 hasConcept C154945302 @default.
- W4320170019 hasConcept C21099817 @default.
- W4320170019 hasConcept C2776151529 @default.
- W4320170019 hasConcept C2776401178 @default.
- W4320170019 hasConcept C2781238097 @default.
- W4320170019 hasConcept C31258907 @default.
- W4320170019 hasConcept C31972630 @default.
- W4320170019 hasConcept C41008148 @default.
- W4320170019 hasConcept C41895202 @default.
- W4320170019 hasConcept C88796919 @default.
- W4320170019 hasConcept C98083399 @default.
- W4320170019 hasConceptScore W4320170019C111368507 @default.
- W4320170019 hasConceptScore W4320170019C120665830 @default.
- W4320170019 hasConceptScore W4320170019C121332964 @default.
- W4320170019 hasConceptScore W4320170019C123403432 @default.
- W4320170019 hasConceptScore W4320170019C127313418 @default.
- W4320170019 hasConceptScore W4320170019C138885662 @default.
- W4320170019 hasConceptScore W4320170019C153180895 @default.
- W4320170019 hasConceptScore W4320170019C154945302 @default.
- W4320170019 hasConceptScore W4320170019C21099817 @default.
- W4320170019 hasConceptScore W4320170019C2776151529 @default.
- W4320170019 hasConceptScore W4320170019C2776401178 @default.
- W4320170019 hasConceptScore W4320170019C2781238097 @default.
- W4320170019 hasConceptScore W4320170019C31258907 @default.
- W4320170019 hasConceptScore W4320170019C31972630 @default.
- W4320170019 hasConceptScore W4320170019C41008148 @default.
- W4320170019 hasConceptScore W4320170019C41895202 @default.
- W4320170019 hasConceptScore W4320170019C88796919 @default.
- W4320170019 hasConceptScore W4320170019C98083399 @default.
- W4320170019 hasFunder F4320321001 @default.
- W4320170019 hasFunder F4320336584 @default.
- W4320170019 hasLocation W43201700191 @default.
- W4320170019 hasOpenAccess W4320170019 @default.
- W4320170019 hasPrimaryLocation W43201700191 @default.
- W4320170019 hasRelatedWork W1971759388 @default.
- W4320170019 hasRelatedWork W2007544051 @default.
- W4320170019 hasRelatedWork W2025800131 @default.
- W4320170019 hasRelatedWork W2035456249 @default.