Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320170022> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4320170022 abstract "Predicting network dynamics based on data, a problem with broad applications, has been studied extensively in the past, but most existing approaches assume that the complete set of historical data from the whole network is available. This requirement presents a great challenge in applications, especially for large, distributed networks in the real world, where data collection is accomplished by many clients in a parallel fashion. Often, each client only has the time series data from a partial set of nodes and the client has access to only partial timestamps of the whole time series data and partial structure of the network. Due to privacy concerns or license related issues, the data collected by different clients cannot be shared. To accurately predict the network dynamics while protecting the privacy of different parties is a critical problem in the modern time. Here, we propose a solution based on federated graph neural networks (FGNNs) that enables the training of a global dynamic model for all parties without data sharing. We validate the working of our FGNN framework through two types of simulations to predict a variety of network dynamics (four discrete and three continuous dynamics). As a significant real-world application, we demonstrate successful prediction of State-wise influenza spreading in the USA. Our FGNN scheme represents a general framework to predict diverse network dynamics through collaborative fusing of the data from different parties without disclosing their privacy." @default.
- W4320170022 created "2023-02-13" @default.
- W4320170022 creator A5028634381 @default.
- W4320170022 creator A5034477653 @default.
- W4320170022 creator A5046036796 @default.
- W4320170022 creator A5051219791 @default.
- W4320170022 creator A5069358349 @default.
- W4320170022 creator A5071754273 @default.
- W4320170022 date "2022-06-09" @default.
- W4320170022 modified "2023-10-18" @default.
- W4320170022 title "Machine learning prediction of network dynamics with privacy protection" @default.
- W4320170022 doi "https://doi.org/10.48550/arxiv.2206.04828" @default.
- W4320170022 hasPublicationYear "2022" @default.
- W4320170022 type Work @default.
- W4320170022 citedByCount "0" @default.
- W4320170022 crossrefType "posted-content" @default.
- W4320170022 hasAuthorship W4320170022A5028634381 @default.
- W4320170022 hasAuthorship W4320170022A5034477653 @default.
- W4320170022 hasAuthorship W4320170022A5046036796 @default.
- W4320170022 hasAuthorship W4320170022A5051219791 @default.
- W4320170022 hasAuthorship W4320170022A5069358349 @default.
- W4320170022 hasAuthorship W4320170022A5071754273 @default.
- W4320170022 hasBestOaLocation W43201700221 @default.
- W4320170022 hasConcept C111919701 @default.
- W4320170022 hasConcept C113954288 @default.
- W4320170022 hasConcept C118615104 @default.
- W4320170022 hasConcept C123757187 @default.
- W4320170022 hasConcept C124101348 @default.
- W4320170022 hasConcept C132525143 @default.
- W4320170022 hasConcept C136197465 @default.
- W4320170022 hasConcept C142724271 @default.
- W4320170022 hasConcept C154945302 @default.
- W4320170022 hasConcept C177264268 @default.
- W4320170022 hasConcept C199360897 @default.
- W4320170022 hasConcept C204787440 @default.
- W4320170022 hasConcept C2522767166 @default.
- W4320170022 hasConcept C2779965156 @default.
- W4320170022 hasConcept C2780560020 @default.
- W4320170022 hasConcept C33923547 @default.
- W4320170022 hasConcept C38652104 @default.
- W4320170022 hasConcept C41008148 @default.
- W4320170022 hasConcept C58489278 @default.
- W4320170022 hasConcept C71924100 @default.
- W4320170022 hasConcept C80444323 @default.
- W4320170022 hasConceptScore W4320170022C111919701 @default.
- W4320170022 hasConceptScore W4320170022C113954288 @default.
- W4320170022 hasConceptScore W4320170022C118615104 @default.
- W4320170022 hasConceptScore W4320170022C123757187 @default.
- W4320170022 hasConceptScore W4320170022C124101348 @default.
- W4320170022 hasConceptScore W4320170022C132525143 @default.
- W4320170022 hasConceptScore W4320170022C136197465 @default.
- W4320170022 hasConceptScore W4320170022C142724271 @default.
- W4320170022 hasConceptScore W4320170022C154945302 @default.
- W4320170022 hasConceptScore W4320170022C177264268 @default.
- W4320170022 hasConceptScore W4320170022C199360897 @default.
- W4320170022 hasConceptScore W4320170022C204787440 @default.
- W4320170022 hasConceptScore W4320170022C2522767166 @default.
- W4320170022 hasConceptScore W4320170022C2779965156 @default.
- W4320170022 hasConceptScore W4320170022C2780560020 @default.
- W4320170022 hasConceptScore W4320170022C33923547 @default.
- W4320170022 hasConceptScore W4320170022C38652104 @default.
- W4320170022 hasConceptScore W4320170022C41008148 @default.
- W4320170022 hasConceptScore W4320170022C58489278 @default.
- W4320170022 hasConceptScore W4320170022C71924100 @default.
- W4320170022 hasConceptScore W4320170022C80444323 @default.
- W4320170022 hasLocation W43201700221 @default.
- W4320170022 hasOpenAccess W4320170022 @default.
- W4320170022 hasPrimaryLocation W43201700221 @default.
- W4320170022 hasRelatedWork W2032501302 @default.
- W4320170022 hasRelatedWork W2090668960 @default.
- W4320170022 hasRelatedWork W2091018730 @default.
- W4320170022 hasRelatedWork W2099940443 @default.
- W4320170022 hasRelatedWork W2250140425 @default.
- W4320170022 hasRelatedWork W2389064843 @default.
- W4320170022 hasRelatedWork W2580495024 @default.
- W4320170022 hasRelatedWork W2734587838 @default.
- W4320170022 hasRelatedWork W2758561209 @default.
- W4320170022 hasRelatedWork W940772121 @default.
- W4320170022 isParatext "false" @default.
- W4320170022 isRetracted "false" @default.
- W4320170022 workType "article" @default.