Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320170194> ?p ?o ?g. }
- W4320170194 endingPage "20" @default.
- W4320170194 startingPage "1" @default.
- W4320170194 abstract "To estimate the accurate fundamental relationship in traffic flow, this paper proposes a novel framework that extends classical fundamental diagram (FD) models to incorporate more dimensions of traffic state variables and allow for the impact of the supply-side factors of roads. The proposed framework is suitable for real-time traffic management, especially in urban areas, due to its reliance on minimal assumptions, its flexibility in adapting to various data sources, and its scalability to higher-dimensional data. The Gaussian process (GP) model is adopted as the base model for learning the optimal mapping from these input features to traffic volume. To enhance the GP model, an in-depth analysis of the properties of its kernel and likelihood function is provided. To cope with the hyperparameter optimisation of the GP, a modified Newton method for GP-based traffic flow model is also designed, which can jump over regions with small gradients. Experiments based on simulation data demonstrate the ability of the proposed framework to capture complex relationships between traffic state variables and supply-side factors, and show its value for estimating dynamic road capacity." @default.
- W4320170194 created "2023-02-13" @default.
- W4320170194 creator A5006748476 @default.
- W4320170194 creator A5032298017 @default.
- W4320170194 creator A5033481679 @default.
- W4320170194 creator A5059827408 @default.
- W4320170194 creator A5070050188 @default.
- W4320170194 creator A5073775434 @default.
- W4320170194 date "2023-01-01" @default.
- W4320170194 modified "2023-09-26" @default.
- W4320170194 title "A Gaussian-Process-Based Data-Driven Traffic Flow Model and Its Application in Road Capacity Analysis" @default.
- W4320170194 cites W1567512734 @default.
- W4320170194 cites W1600175910 @default.
- W4320170194 cites W1965342783 @default.
- W4320170194 cites W1966166193 @default.
- W4320170194 cites W1979690402 @default.
- W4320170194 cites W1989473098 @default.
- W4320170194 cites W1989900524 @default.
- W4320170194 cites W2012152938 @default.
- W4320170194 cites W2017506082 @default.
- W4320170194 cites W2024603446 @default.
- W4320170194 cites W2028649492 @default.
- W4320170194 cites W2029465969 @default.
- W4320170194 cites W2036785686 @default.
- W4320170194 cites W2037141248 @default.
- W4320170194 cites W2049018511 @default.
- W4320170194 cites W2055374326 @default.
- W4320170194 cites W2093921901 @default.
- W4320170194 cites W2097223009 @default.
- W4320170194 cites W2101074405 @default.
- W4320170194 cites W2130448123 @default.
- W4320170194 cites W2140254179 @default.
- W4320170194 cites W2144713380 @default.
- W4320170194 cites W2145227993 @default.
- W4320170194 cites W2155718420 @default.
- W4320170194 cites W2160400057 @default.
- W4320170194 cites W2164863800 @default.
- W4320170194 cites W2487175822 @default.
- W4320170194 cites W2543628422 @default.
- W4320170194 cites W2593182953 @default.
- W4320170194 cites W2708015072 @default.
- W4320170194 cites W2734024016 @default.
- W4320170194 cites W2739166195 @default.
- W4320170194 cites W2763100273 @default.
- W4320170194 cites W2776822134 @default.
- W4320170194 cites W2801295648 @default.
- W4320170194 cites W2913670315 @default.
- W4320170194 cites W2921374915 @default.
- W4320170194 cites W2963420343 @default.
- W4320170194 cites W3014576867 @default.
- W4320170194 cites W3135178273 @default.
- W4320170194 cites W3176572632 @default.
- W4320170194 cites W3199227428 @default.
- W4320170194 cites W3203984526 @default.
- W4320170194 cites W3209082596 @default.
- W4320170194 cites W3210276955 @default.
- W4320170194 cites W322806488 @default.
- W4320170194 cites W4220728241 @default.
- W4320170194 cites W4280623007 @default.
- W4320170194 cites W4281252459 @default.
- W4320170194 cites W9664812 @default.
- W4320170194 doi "https://doi.org/10.1109/tits.2022.3223982" @default.
- W4320170194 hasPublicationYear "2023" @default.
- W4320170194 type Work @default.
- W4320170194 citedByCount "1" @default.
- W4320170194 countsByYear W43201701942023 @default.
- W4320170194 crossrefType "journal-article" @default.
- W4320170194 hasAuthorship W4320170194A5006748476 @default.
- W4320170194 hasAuthorship W4320170194A5032298017 @default.
- W4320170194 hasAuthorship W4320170194A5033481679 @default.
- W4320170194 hasAuthorship W4320170194A5059827408 @default.
- W4320170194 hasAuthorship W4320170194A5070050188 @default.
- W4320170194 hasAuthorship W4320170194A5073775434 @default.
- W4320170194 hasConcept C105795698 @default.
- W4320170194 hasConcept C111919701 @default.
- W4320170194 hasConcept C11413529 @default.
- W4320170194 hasConcept C114614502 @default.
- W4320170194 hasConcept C121332964 @default.
- W4320170194 hasConcept C124101348 @default.
- W4320170194 hasConcept C126255220 @default.
- W4320170194 hasConcept C14036430 @default.
- W4320170194 hasConcept C163716315 @default.
- W4320170194 hasConcept C207512268 @default.
- W4320170194 hasConcept C2780598303 @default.
- W4320170194 hasConcept C33923547 @default.
- W4320170194 hasConcept C38652104 @default.
- W4320170194 hasConcept C41008148 @default.
- W4320170194 hasConcept C48044578 @default.
- W4320170194 hasConcept C61326573 @default.
- W4320170194 hasConcept C62520636 @default.
- W4320170194 hasConcept C74193536 @default.
- W4320170194 hasConcept C77088390 @default.
- W4320170194 hasConcept C78458016 @default.
- W4320170194 hasConcept C8642999 @default.
- W4320170194 hasConcept C86803240 @default.
- W4320170194 hasConcept C98045186 @default.
- W4320170194 hasConceptScore W4320170194C105795698 @default.
- W4320170194 hasConceptScore W4320170194C111919701 @default.