Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320170212> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4320170212 endingPage "1150" @default.
- W4320170212 startingPage "1139" @default.
- W4320170212 abstract "In recent years, the accurate recognition of traffic scenes has played a key role in autonomous vehicle operations. However, most works in this area do not address the domain shift issue where the classification performance is degraded when the distribution of the source and target images are different due to weather changes. Also, lack of sparsity of current studies results in sample complexity and overfitting issues. To mitigate these challenges, this paper proposes a novel Sparse Adversarial Domain Adaptation (SADA) model for traffic scene classification. Our objective is to learn a scene classifier on a source domain with sunny weather and transfer its knowledge to a target domain with different weather (i.e., cloudy, rainy, and snowy) to enhance the classification performance on the target. First, a sparse representation is learned from the source traffic scenes via nonlinear dictionary learning in the latent space of a deep classifier. Then, a conditional generative adversarial network is devised to capture the distribution of the source sparse codes. Finally, a domain invariant sparse feature extractor is developed via a minimax game to align the sparse codes of the target domain images with the source; hence, providing domain adaptation for traffic scene classification using a deep neural network. Experimental results on a real-world dataset collected by the Honda Research Institute (HRI) indicate the superior performance of the proposed SADA compared to current traffic scene classification methods and state-of-the-art domain adaptation frameworks." @default.
- W4320170212 created "2023-02-13" @default.
- W4320170212 creator A5022738525 @default.
- W4320170212 creator A5037009406 @default.
- W4320170212 creator A5052831041 @default.
- W4320170212 date "2023-08-01" @default.
- W4320170212 modified "2023-09-28" @default.
- W4320170212 title "Sparse Adversarial Unsupervised Domain Adaptation With Deep Dictionary Learning for Traffic Scene Classification" @default.
- W4320170212 cites W2032983437 @default.
- W4320170212 cites W2037333893 @default.
- W4320170212 cites W2055633640 @default.
- W4320170212 cites W2194775991 @default.
- W4320170212 cites W2296073425 @default.
- W4320170212 cites W2619354140 @default.
- W4320170212 cites W2732026016 @default.
- W4320170212 cites W2792291747 @default.
- W4320170212 cites W2809446072 @default.
- W4320170212 cites W2912080574 @default.
- W4320170212 cites W2949406885 @default.
- W4320170212 cites W2967284463 @default.
- W4320170212 cites W2968584961 @default.
- W4320170212 cites W2981630749 @default.
- W4320170212 cites W3007868236 @default.
- W4320170212 cites W3035256099 @default.
- W4320170212 cites W3106572427 @default.
- W4320170212 cites W3107893623 @default.
- W4320170212 cites W3134873676 @default.
- W4320170212 cites W3171349866 @default.
- W4320170212 cites W3181434681 @default.
- W4320170212 cites W3195244249 @default.
- W4320170212 cites W3202966491 @default.
- W4320170212 cites W3210991238 @default.
- W4320170212 cites W4205669430 @default.
- W4320170212 cites W4210628166 @default.
- W4320170212 cites W4224331011 @default.
- W4320170212 cites W4225124597 @default.
- W4320170212 cites W4229375235 @default.
- W4320170212 doi "https://doi.org/10.1109/tetci.2023.3234548" @default.
- W4320170212 hasPublicationYear "2023" @default.
- W4320170212 type Work @default.
- W4320170212 citedByCount "1" @default.
- W4320170212 countsByYear W43201702122023 @default.
- W4320170212 crossrefType "journal-article" @default.
- W4320170212 hasAuthorship W4320170212A5022738525 @default.
- W4320170212 hasAuthorship W4320170212A5037009406 @default.
- W4320170212 hasAuthorship W4320170212A5052831041 @default.
- W4320170212 hasConcept C108583219 @default.
- W4320170212 hasConcept C115961682 @default.
- W4320170212 hasConcept C119857082 @default.
- W4320170212 hasConcept C124066611 @default.
- W4320170212 hasConcept C150899416 @default.
- W4320170212 hasConcept C153180895 @default.
- W4320170212 hasConcept C154945302 @default.
- W4320170212 hasConcept C22019652 @default.
- W4320170212 hasConcept C37736160 @default.
- W4320170212 hasConcept C41008148 @default.
- W4320170212 hasConcept C50644808 @default.
- W4320170212 hasConcept C59404180 @default.
- W4320170212 hasConcept C75294576 @default.
- W4320170212 hasConcept C81363708 @default.
- W4320170212 hasConcept C95623464 @default.
- W4320170212 hasConceptScore W4320170212C108583219 @default.
- W4320170212 hasConceptScore W4320170212C115961682 @default.
- W4320170212 hasConceptScore W4320170212C119857082 @default.
- W4320170212 hasConceptScore W4320170212C124066611 @default.
- W4320170212 hasConceptScore W4320170212C150899416 @default.
- W4320170212 hasConceptScore W4320170212C153180895 @default.
- W4320170212 hasConceptScore W4320170212C154945302 @default.
- W4320170212 hasConceptScore W4320170212C22019652 @default.
- W4320170212 hasConceptScore W4320170212C37736160 @default.
- W4320170212 hasConceptScore W4320170212C41008148 @default.
- W4320170212 hasConceptScore W4320170212C50644808 @default.
- W4320170212 hasConceptScore W4320170212C59404180 @default.
- W4320170212 hasConceptScore W4320170212C75294576 @default.
- W4320170212 hasConceptScore W4320170212C81363708 @default.
- W4320170212 hasConceptScore W4320170212C95623464 @default.
- W4320170212 hasIssue "4" @default.
- W4320170212 hasLocation W43201702121 @default.
- W4320170212 hasOpenAccess W4320170212 @default.
- W4320170212 hasPrimaryLocation W43201702121 @default.
- W4320170212 hasRelatedWork W2742991909 @default.
- W4320170212 hasRelatedWork W2767651786 @default.
- W4320170212 hasRelatedWork W2996856019 @default.
- W4320170212 hasRelatedWork W3012393889 @default.
- W4320170212 hasRelatedWork W3018421652 @default.
- W4320170212 hasRelatedWork W3195780658 @default.
- W4320170212 hasRelatedWork W4220996320 @default.
- W4320170212 hasRelatedWork W4224526119 @default.
- W4320170212 hasRelatedWork W4313020796 @default.
- W4320170212 hasRelatedWork W4321786298 @default.
- W4320170212 hasVolume "7" @default.
- W4320170212 isParatext "false" @default.
- W4320170212 isRetracted "false" @default.
- W4320170212 workType "article" @default.