Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320176543> ?p ?o ?g. }
- W4320176543 endingPage "108175" @default.
- W4320176543 startingPage "108175" @default.
- W4320176543 abstract "This paper established hybrid prediction models based on variational mode decomposition (VMD), empirical mode decomposition (EMD), and ensemble empirical mode decomposition (EEMD) combined with the backpropagation neural network model (BPNN) to improve the prediction accuracy of reference crop evapotranspiration (ET0) time series with the characteristics of nonlinearity and instability. The daily ET0 data of 11 representative stations in Xinjiang from 1993 to 2016 were selected for model training and testing and compared with the results of support vector regression (SVR) and gradient boosting regression tree (GBRT) as the two empirical machine learning models. The results indicated the superiority of the VMD-BPNN hybrid prediction model to EMD-BPNN and EEMD-BPNN in terms of accuracy and stability, with root mean square error (RMSE) = 0.405 mm/d, mean absolute error (MAE) = 0.268 mm/d, and coefficient of determination (R2) = 0.979. When employing the VMD-BPNN model to forecast ET0 for seven days, the RMSE and Nash-Sutcliffe efficiency coefficient (NSE) of the VMD-BPNN model were 0.588 mm/d and 0.952, respectively, and the prediction results indicated high precision and reliability. The prediction accuracy of the VMD-BPNN model was significantly higher than that of single machine learning models, such as BPNN, SVR, and GBRT. The RMSE and MAE values of the VMD-BPNN model were more than 60% smaller than BPNN, SVR, and GBRT models, and R2 and NSE were approximately 18% higher than BPNN, SVR, and GBRT models, respectively. This demonstrates the effectiveness of the VMD method in reducing the non-stationarity of the original daily ET0 data. The BPNN model predicted the decomposed data series, and the prediction accuracy and stability were significantly enhanced. This indicates the high reliability of the VMD-BPNN model and its capability for ET0 prediction in Xinjiang." @default.
- W4320176543 created "2023-02-13" @default.
- W4320176543 creator A5013299897 @default.
- W4320176543 creator A5016420216 @default.
- W4320176543 creator A5065101788 @default.
- W4320176543 creator A5086326013 @default.
- W4320176543 date "2023-04-01" @default.
- W4320176543 modified "2023-10-09" @default.
- W4320176543 title "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China" @default.
- W4320176543 cites W1972641521 @default.
- W4320176543 cites W1978128908 @default.
- W4320176543 cites W1987433132 @default.
- W4320176543 cites W1992656882 @default.
- W4320176543 cites W2000982976 @default.
- W4320176543 cites W2007221293 @default.
- W4320176543 cites W2021432630 @default.
- W4320176543 cites W2045251015 @default.
- W4320176543 cites W2070493638 @default.
- W4320176543 cites W2120390927 @default.
- W4320176543 cites W2137226063 @default.
- W4320176543 cites W2296778215 @default.
- W4320176543 cites W2493918211 @default.
- W4320176543 cites W2603417106 @default.
- W4320176543 cites W2613431595 @default.
- W4320176543 cites W2749106749 @default.
- W4320176543 cites W2791961911 @default.
- W4320176543 cites W2807694716 @default.
- W4320176543 cites W2889246260 @default.
- W4320176543 cites W2917765645 @default.
- W4320176543 cites W2921189400 @default.
- W4320176543 cites W2937245784 @default.
- W4320176543 cites W2955270041 @default.
- W4320176543 cites W2957731227 @default.
- W4320176543 cites W2971132334 @default.
- W4320176543 cites W2983509179 @default.
- W4320176543 cites W3003576014 @default.
- W4320176543 cites W3016181011 @default.
- W4320176543 cites W3032512766 @default.
- W4320176543 cites W3038159662 @default.
- W4320176543 cites W3047647423 @default.
- W4320176543 cites W3106519072 @default.
- W4320176543 cites W3132114041 @default.
- W4320176543 cites W3134957427 @default.
- W4320176543 cites W3198900964 @default.
- W4320176543 cites W3200507375 @default.
- W4320176543 cites W3203660323 @default.
- W4320176543 cites W3214759127 @default.
- W4320176543 cites W4206948388 @default.
- W4320176543 cites W4210557061 @default.
- W4320176543 cites W4214607564 @default.
- W4320176543 cites W4224120062 @default.
- W4320176543 cites W4280629532 @default.
- W4320176543 cites W4283009932 @default.
- W4320176543 cites W4283076372 @default.
- W4320176543 cites W4288871001 @default.
- W4320176543 cites W4293079902 @default.
- W4320176543 cites W4295015172 @default.
- W4320176543 cites W640052560 @default.
- W4320176543 doi "https://doi.org/10.1016/j.agwat.2023.108175" @default.
- W4320176543 hasPublicationYear "2023" @default.
- W4320176543 type Work @default.
- W4320176543 citedByCount "6" @default.
- W4320176543 countsByYear W43201765432023 @default.
- W4320176543 crossrefType "journal-article" @default.
- W4320176543 hasAuthorship W4320176543A5013299897 @default.
- W4320176543 hasAuthorship W4320176543A5016420216 @default.
- W4320176543 hasAuthorship W4320176543A5065101788 @default.
- W4320176543 hasAuthorship W4320176543A5086326013 @default.
- W4320176543 hasBestOaLocation W43201765431 @default.
- W4320176543 hasConcept C105795698 @default.
- W4320176543 hasConcept C119857082 @default.
- W4320176543 hasConcept C12267149 @default.
- W4320176543 hasConcept C128990827 @default.
- W4320176543 hasConcept C139945424 @default.
- W4320176543 hasConcept C150217764 @default.
- W4320176543 hasConcept C154945302 @default.
- W4320176543 hasConcept C155032097 @default.
- W4320176543 hasConcept C169258074 @default.
- W4320176543 hasConcept C186370098 @default.
- W4320176543 hasConcept C25570617 @default.
- W4320176543 hasConcept C2780092901 @default.
- W4320176543 hasConcept C33923547 @default.
- W4320176543 hasConcept C41008148 @default.
- W4320176543 hasConcept C45804977 @default.
- W4320176543 hasConcept C50644808 @default.
- W4320176543 hasConcept C70153297 @default.
- W4320176543 hasConceptScore W4320176543C105795698 @default.
- W4320176543 hasConceptScore W4320176543C119857082 @default.
- W4320176543 hasConceptScore W4320176543C12267149 @default.
- W4320176543 hasConceptScore W4320176543C128990827 @default.
- W4320176543 hasConceptScore W4320176543C139945424 @default.
- W4320176543 hasConceptScore W4320176543C150217764 @default.
- W4320176543 hasConceptScore W4320176543C154945302 @default.
- W4320176543 hasConceptScore W4320176543C155032097 @default.
- W4320176543 hasConceptScore W4320176543C169258074 @default.
- W4320176543 hasConceptScore W4320176543C186370098 @default.
- W4320176543 hasConceptScore W4320176543C25570617 @default.
- W4320176543 hasConceptScore W4320176543C2780092901 @default.