Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320176552> ?p ?o ?g. }
- W4320176552 endingPage "108847" @default.
- W4320176552 startingPage "108847" @default.
- W4320176552 abstract "in crop growth data assimilation systems, the mismatch between simulated and observed phenology significantly deteriorates the performance of crop growth modeling. This situation may be more severe for smallholder farmers-managed fields, where the phenological heterogeneity was high even when climate condition was relatively uniform. Previous studies investigated the non-sequential methods to retrospectively assimilate historical phenology observations. However, approaches to dynamically assimilating phenological measurements through sequential data assimilation methods remain unexplored one of the most intractable challenges of dynamic phenology assimilation is that a considerable proportion of model parameters and variables are entangled with phenology, therefore simply assimilating phenological measurements could disturb the model clock. This study aims to establish a robust crop data assimilation framework capable of assimilating phenological measurements in real time without disturbing the model clock the framework used an open-source version of the AquaCrop model to simulate crop growth and used the ensemble Kalman filter (EnKF) to assimilate observations sequentially. A parameter refresh method was proposed to restore the phenological consistency of model parameters after updating the phenology state. Assimilation strategies with different observation types and compositions of state vectors were designed after a global sensitivity analysis of model parameters. These strategies were evaluated through the Observing System Simulation Experiments (OSSE), and the selected strategies were tested in a real-world case. the results of the OSS Experiments show that the phenological mismatch problem greatly affects crop growth simulation, and this mismatch could not be narrowed effectively by assimilating non-phenological observations. Assimilating phenological measurements with the proposed parameters refresh method and assimilation strategies closed this mismatch and produced better performance compared to the Restart-EnKF method. In the real-world paddy rice case, assimilating phenology with the proposed strategies significantly improved yield estimation in low-yield plots (less than 4 ton/ha) compared to assimilating canopy cover (CC) alone, with an R2 increase from 0.07 to 0.48. Assimilating CC, biomass and phenology simultaneously produced the best yield estimation for all plots, with R2 = 0.57 and RMSE = 1.00 ton/ha. assimilating phenology under a consistent model clock significantly improved yield estimation when the phenological heterogeneity of plots was high. the results highlight the effectiveness and robustness of the established data assimilation framework for dynamic crop growth simulation, indicating the potentials of the proposed data assimilation framework for regional in-season crop modeling and yield forecasting." @default.
- W4320176552 created "2023-02-13" @default.
- W4320176552 creator A5019230010 @default.
- W4320176552 creator A5035951709 @default.
- W4320176552 creator A5038027560 @default.
- W4320176552 creator A5068444754 @default.
- W4320176552 creator A5070134412 @default.
- W4320176552 creator A5073329676 @default.
- W4320176552 creator A5082480209 @default.
- W4320176552 date "2023-03-01" @default.
- W4320176552 modified "2023-10-18" @default.
- W4320176552 title "Regulating the time of the crop model clock: A data assimilation framework for regions with high phenological heterogeneity" @default.
- W4320176552 cites W1586274211 @default.
- W4320176552 cites W1764866276 @default.
- W4320176552 cites W1983358280 @default.
- W4320176552 cites W1984671422 @default.
- W4320176552 cites W1985264945 @default.
- W4320176552 cites W1994975670 @default.
- W4320176552 cites W1999310382 @default.
- W4320176552 cites W2022685475 @default.
- W4320176552 cites W2025384267 @default.
- W4320176552 cites W2026200869 @default.
- W4320176552 cites W2030808363 @default.
- W4320176552 cites W2035110811 @default.
- W4320176552 cites W2042023890 @default.
- W4320176552 cites W2045045977 @default.
- W4320176552 cites W2053076969 @default.
- W4320176552 cites W2054826427 @default.
- W4320176552 cites W2056191667 @default.
- W4320176552 cites W2105934661 @default.
- W4320176552 cites W2111626115 @default.
- W4320176552 cites W2133126846 @default.
- W4320176552 cites W2138626741 @default.
- W4320176552 cites W2143040793 @default.
- W4320176552 cites W2146501057 @default.
- W4320176552 cites W2153901968 @default.
- W4320176552 cites W2157098139 @default.
- W4320176552 cites W2158883105 @default.
- W4320176552 cites W2161557312 @default.
- W4320176552 cites W2165005410 @default.
- W4320176552 cites W2170593417 @default.
- W4320176552 cites W2179860363 @default.
- W4320176552 cites W2212980623 @default.
- W4320176552 cites W2238980044 @default.
- W4320176552 cites W2277093207 @default.
- W4320176552 cites W2299757333 @default.
- W4320176552 cites W2326363013 @default.
- W4320176552 cites W2551220390 @default.
- W4320176552 cites W2586216468 @default.
- W4320176552 cites W2619634102 @default.
- W4320176552 cites W2756317120 @default.
- W4320176552 cites W2766301242 @default.
- W4320176552 cites W2895934659 @default.
- W4320176552 cites W2898711345 @default.
- W4320176552 cites W2906866237 @default.
- W4320176552 cites W2943654052 @default.
- W4320176552 cites W2981110544 @default.
- W4320176552 cites W2990259822 @default.
- W4320176552 cites W3007054076 @default.
- W4320176552 cites W3011876419 @default.
- W4320176552 cites W3035606236 @default.
- W4320176552 cites W3037558530 @default.
- W4320176552 cites W3084470071 @default.
- W4320176552 cites W3110968815 @default.
- W4320176552 cites W3124539583 @default.
- W4320176552 cites W3183866648 @default.
- W4320176552 cites W3203081544 @default.
- W4320176552 cites W4234102482 @default.
- W4320176552 cites W4296219940 @default.
- W4320176552 cites W999207820 @default.
- W4320176552 doi "https://doi.org/10.1016/j.fcr.2023.108847" @default.
- W4320176552 hasPublicationYear "2023" @default.
- W4320176552 type Work @default.
- W4320176552 citedByCount "0" @default.
- W4320176552 crossrefType "journal-article" @default.
- W4320176552 hasAuthorship W4320176552A5019230010 @default.
- W4320176552 hasAuthorship W4320176552A5035951709 @default.
- W4320176552 hasAuthorship W4320176552A5038027560 @default.
- W4320176552 hasAuthorship W4320176552A5068444754 @default.
- W4320176552 hasAuthorship W4320176552A5070134412 @default.
- W4320176552 hasAuthorship W4320176552A5073329676 @default.
- W4320176552 hasAuthorship W4320176552A5082480209 @default.
- W4320176552 hasConcept C138885662 @default.
- W4320176552 hasConcept C153294291 @default.
- W4320176552 hasConcept C154945302 @default.
- W4320176552 hasConcept C157286648 @default.
- W4320176552 hasConcept C18903297 @default.
- W4320176552 hasConcept C205649164 @default.
- W4320176552 hasConcept C206833254 @default.
- W4320176552 hasConcept C24552861 @default.
- W4320176552 hasConcept C39432304 @default.
- W4320176552 hasConcept C41008148 @default.
- W4320176552 hasConcept C41895202 @default.
- W4320176552 hasConcept C51417038 @default.
- W4320176552 hasConcept C75649859 @default.
- W4320176552 hasConcept C79334102 @default.
- W4320176552 hasConcept C86803240 @default.
- W4320176552 hasConceptScore W4320176552C138885662 @default.