Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320176775> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4320176775 abstract "This paper studies a new and highly efficient Markov chain Monte Carlo (MCMC) methodology to perform Bayesian inference in low-photon imaging problems, with particular attention to situations involving observation noise processes that deviate significantly from Gaussian noise, such as binomial, geometric and low-intensity Poisson noise. These problems are challenging for many reasons. From an inferential viewpoint, low-photon numbers lead to severe identifiability issues, poor stability and high uncertainty about the solution. Moreover, low-photon models often exhibit poor regularity properties that make efficient Bayesian computation difficult; e.g., hard non-negativity constraints, non-smooth priors, and log-likelihood terms with exploding gradients. More precisely, the lack of suitable regularity properties hinders the use of state-of-the-art Monte Carlo methods based on numerical approximations of the Langevin stochastic differential equation (SDE), as both the SDE and its numerical approximations behave poorly. We address this difficulty by proposing an MCMC methodology based on a reflected and regularised Langevin SDE, which is shown to be well-posed and exponentially ergodic under mild and easily verifiable conditions. This then allows us to derive four reflected proximal Langevin MCMC algorithms to perform Bayesian computation in low-photon imaging problems. The proposed approach is demonstrated with a range of experiments related to image deblurring, denoising, and inpainting under binomial, geometric and Poisson noise." @default.
- W4320176775 created "2023-02-13" @default.
- W4320176775 creator A5029743073 @default.
- W4320176775 creator A5030405438 @default.
- W4320176775 creator A5067973917 @default.
- W4320176775 creator A5068361059 @default.
- W4320176775 creator A5082169271 @default.
- W4320176775 date "2022-06-10" @default.
- W4320176775 modified "2023-09-26" @default.
- W4320176775 title "Efficient Bayesian computation for low-photon imaging problems" @default.
- W4320176775 doi "https://doi.org/10.48550/arxiv.2206.05350" @default.
- W4320176775 hasPublicationYear "2022" @default.
- W4320176775 type Work @default.
- W4320176775 citedByCount "0" @default.
- W4320176775 crossrefType "posted-content" @default.
- W4320176775 hasAuthorship W4320176775A5029743073 @default.
- W4320176775 hasAuthorship W4320176775A5030405438 @default.
- W4320176775 hasAuthorship W4320176775A5067973917 @default.
- W4320176775 hasAuthorship W4320176775A5068361059 @default.
- W4320176775 hasAuthorship W4320176775A5082169271 @default.
- W4320176775 hasBestOaLocation W43201767751 @default.
- W4320176775 hasConcept C107673813 @default.
- W4320176775 hasConcept C111350023 @default.
- W4320176775 hasConcept C11413529 @default.
- W4320176775 hasConcept C121332964 @default.
- W4320176775 hasConcept C121864883 @default.
- W4320176775 hasConcept C126255220 @default.
- W4320176775 hasConcept C154945302 @default.
- W4320176775 hasConcept C160234255 @default.
- W4320176775 hasConcept C177769412 @default.
- W4320176775 hasConcept C28826006 @default.
- W4320176775 hasConcept C33923547 @default.
- W4320176775 hasConcept C41008148 @default.
- W4320176775 hasConcept C45374587 @default.
- W4320176775 hasConceptScore W4320176775C107673813 @default.
- W4320176775 hasConceptScore W4320176775C111350023 @default.
- W4320176775 hasConceptScore W4320176775C11413529 @default.
- W4320176775 hasConceptScore W4320176775C121332964 @default.
- W4320176775 hasConceptScore W4320176775C121864883 @default.
- W4320176775 hasConceptScore W4320176775C126255220 @default.
- W4320176775 hasConceptScore W4320176775C154945302 @default.
- W4320176775 hasConceptScore W4320176775C160234255 @default.
- W4320176775 hasConceptScore W4320176775C177769412 @default.
- W4320176775 hasConceptScore W4320176775C28826006 @default.
- W4320176775 hasConceptScore W4320176775C33923547 @default.
- W4320176775 hasConceptScore W4320176775C41008148 @default.
- W4320176775 hasConceptScore W4320176775C45374587 @default.
- W4320176775 hasLocation W43201767751 @default.
- W4320176775 hasOpenAccess W4320176775 @default.
- W4320176775 hasPrimaryLocation W43201767751 @default.
- W4320176775 hasRelatedWork W1593200545 @default.
- W4320176775 hasRelatedWork W1979471890 @default.
- W4320176775 hasRelatedWork W2027276540 @default.
- W4320176775 hasRelatedWork W2129343067 @default.
- W4320176775 hasRelatedWork W2162457363 @default.
- W4320176775 hasRelatedWork W2255115219 @default.
- W4320176775 hasRelatedWork W2604622397 @default.
- W4320176775 hasRelatedWork W2920989603 @default.
- W4320176775 hasRelatedWork W2925925868 @default.
- W4320176775 hasRelatedWork W3086697448 @default.
- W4320176775 isParatext "false" @default.
- W4320176775 isRetracted "false" @default.
- W4320176775 workType "article" @default.