Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320180208> ?p ?o ?g. }
- W4320180208 abstract "Abstract Compressed Sensing (CS) is widely used to accelerate clinical diffusion MRI acquisitions, but it remains under-utilized in preclinical settings. In this study, we optimized and compared several CS reconstruction methods for diffusion imaging. Different undersampling patterns and two reconstruction approaches were evaluated: conventional CS, based on Berkeley Advanced Reconstruction Toolbox (BART-CS) toolbox, and a new Kernel Low-Rank (KLR)-CS, based on Kernel Principal Component Analysis and low-resolution-phase maps. 3D CS acquisitions were performed at 9.4T using a 4-element cryocoil on mice (wild type and a MAP6 knockout). Comparison metrics were error and Structural Similarity Index Measure (SSIM) on fractional anisotropy (FA) and mean diffusivity (MD), as well as reconstructions of the anterior commissure and fornix. Acceleration factors (AF) up to 6 were considered. In the case of retrospective undersampling, the proposed KLR-CS outperformed BART-CS up to AF=6 for FA and MD maps and tractography. For instance, for AF=4, the maximum errors were respectively 8.0% for BART-CS and 4.9% for KLR-CS, considering both FA and MD in the corpus callosum. Regarding undersampled acquisitions, these maximum errors became respectively 10.5% for BART-CS and 7.0% for KLR-CS. This difference between simulations and acquisitions arose mainly from repetition noise, but also from differences in resonance frequency drift, signal-to-noise ratio, and in reconstruction noise. Despite this increased error, fully sampled and AF=2 yielded comparable results for FA, MD and tractography, and AF=4 showed minor faults. Altogether, KLR-CS based on low-resolution-phase maps seems a robust approach to accelerate preclinical diffusion MRI." @default.
- W4320180208 created "2023-02-13" @default.
- W4320180208 creator A5021896625 @default.
- W4320180208 creator A5035217991 @default.
- W4320180208 creator A5055917711 @default.
- W4320180208 creator A5072008847 @default.
- W4320180208 date "2023-02-12" @default.
- W4320180208 modified "2023-10-18" @default.
- W4320180208 title "Evaluation of Kernel Low-Rank Compressed Sensing in preclinical Diffusion Magnetic Resonance Imaging" @default.
- W4320180208 cites W1545171847 @default.
- W4320180208 cites W1573880374 @default.
- W4320180208 cites W1979250708 @default.
- W4320180208 cites W1981734795 @default.
- W4320180208 cites W1987263024 @default.
- W4320180208 cites W2000133863 @default.
- W4320180208 cites W2001611992 @default.
- W4320180208 cites W2004610664 @default.
- W4320180208 cites W2019925358 @default.
- W4320180208 cites W2034252184 @default.
- W4320180208 cites W2034263202 @default.
- W4320180208 cites W2077203280 @default.
- W4320180208 cites W2099636437 @default.
- W4320180208 cites W2101675075 @default.
- W4320180208 cites W2103375347 @default.
- W4320180208 cites W2111388536 @default.
- W4320180208 cites W2117649283 @default.
- W4320180208 cites W2165020904 @default.
- W4320180208 cites W2169239134 @default.
- W4320180208 cites W2203750587 @default.
- W4320180208 cites W2211925052 @default.
- W4320180208 cites W2259972673 @default.
- W4320180208 cites W2277938790 @default.
- W4320180208 cites W2413166264 @default.
- W4320180208 cites W2560171082 @default.
- W4320180208 cites W2592954100 @default.
- W4320180208 cites W2726168645 @default.
- W4320180208 cites W2753929456 @default.
- W4320180208 cites W2801933823 @default.
- W4320180208 cites W2890765734 @default.
- W4320180208 cites W2896054722 @default.
- W4320180208 cites W2908873665 @default.
- W4320180208 cites W2915235222 @default.
- W4320180208 cites W2948128855 @default.
- W4320180208 cites W2963541822 @default.
- W4320180208 cites W2996927594 @default.
- W4320180208 cites W3003521510 @default.
- W4320180208 cites W3026582292 @default.
- W4320180208 cites W3080972583 @default.
- W4320180208 cites W3142561137 @default.
- W4320180208 cites W3208295455 @default.
- W4320180208 cites W4213065378 @default.
- W4320180208 cites W4226133625 @default.
- W4320180208 cites W4249760698 @default.
- W4320180208 cites W4254714151 @default.
- W4320180208 cites W4285483945 @default.
- W4320180208 cites W4286901930 @default.
- W4320180208 doi "https://doi.org/10.1101/2023.02.09.527467" @default.
- W4320180208 hasPublicationYear "2023" @default.
- W4320180208 type Work @default.
- W4320180208 citedByCount "0" @default.
- W4320180208 crossrefType "posted-content" @default.
- W4320180208 hasAuthorship W4320180208A5021896625 @default.
- W4320180208 hasAuthorship W4320180208A5035217991 @default.
- W4320180208 hasAuthorship W4320180208A5055917711 @default.
- W4320180208 hasAuthorship W4320180208A5072008847 @default.
- W4320180208 hasBestOaLocation W43201802081 @default.
- W4320180208 hasConcept C11413529 @default.
- W4320180208 hasConcept C114614502 @default.
- W4320180208 hasConcept C115961682 @default.
- W4320180208 hasConcept C121332964 @default.
- W4320180208 hasConcept C124851039 @default.
- W4320180208 hasConcept C126838900 @default.
- W4320180208 hasConcept C136536468 @default.
- W4320180208 hasConcept C143409427 @default.
- W4320180208 hasConcept C149550507 @default.
- W4320180208 hasConcept C153180895 @default.
- W4320180208 hasConcept C154945302 @default.
- W4320180208 hasConcept C33923547 @default.
- W4320180208 hasConcept C41008148 @default.
- W4320180208 hasConcept C46141821 @default.
- W4320180208 hasConcept C71924100 @default.
- W4320180208 hasConcept C74193536 @default.
- W4320180208 hasConcept C84787856 @default.
- W4320180208 hasConcept C99498987 @default.
- W4320180208 hasConceptScore W4320180208C11413529 @default.
- W4320180208 hasConceptScore W4320180208C114614502 @default.
- W4320180208 hasConceptScore W4320180208C115961682 @default.
- W4320180208 hasConceptScore W4320180208C121332964 @default.
- W4320180208 hasConceptScore W4320180208C124851039 @default.
- W4320180208 hasConceptScore W4320180208C126838900 @default.
- W4320180208 hasConceptScore W4320180208C136536468 @default.
- W4320180208 hasConceptScore W4320180208C143409427 @default.
- W4320180208 hasConceptScore W4320180208C149550507 @default.
- W4320180208 hasConceptScore W4320180208C153180895 @default.
- W4320180208 hasConceptScore W4320180208C154945302 @default.
- W4320180208 hasConceptScore W4320180208C33923547 @default.
- W4320180208 hasConceptScore W4320180208C41008148 @default.
- W4320180208 hasConceptScore W4320180208C46141821 @default.
- W4320180208 hasConceptScore W4320180208C71924100 @default.
- W4320180208 hasConceptScore W4320180208C74193536 @default.