Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320184480> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4320184480 endingPage "1656" @default.
- W4320184480 startingPage "1645" @default.
- W4320184480 abstract "Performing measurements in reacting flows is a challenging task due to the complexity of measuring all quantities of interest simultaneously or limitations in the optical access. To compensate for this, recent advances in deep learning have shown a strong potential in augmenting the information content in datasets composed of partial measurements by reconstructing the quantities that could not be measured. The present work analyses the use of such deep learning tools for the reconstruction of quantities in two different cases. First, Convolutional Neural Networks (CNNs) are used to reconstruct the heat release rate (HRR) from velocity measurements in a methane/air premixed flame under harmonic excitation. The CNNs are trained from complete datasets at some specific frequencies and amplitudes of excitation and their ablility to reconstruct the HRR for different operating conditions with good accuracy is demonstrated. Secondly, an alternate approach based on Physics-Informed Neural Networks that do not require the training data to have all the quantities is explored. It is applied to a puffing pool fire where the velocity field is reconstructed from observations of pressure, temperature and density with good accuracy. Both approaches are also shown to be robust with respect to noise." @default.
- W4320184480 created "2023-02-13" @default.
- W4320184480 creator A5025942477 @default.
- W4320184480 creator A5031604355 @default.
- W4320184480 creator A5047417610 @default.
- W4320184480 creator A5085790806 @default.
- W4320184480 date "2023-02-01" @default.
- W4320184480 modified "2023-10-16" @default.
- W4320184480 title "Physical Quantities Reconstruction in Reacting Flows with Deep Learning" @default.
- W4320184480 doi "https://doi.org/10.3397/in_2022_0235" @default.
- W4320184480 hasPublicationYear "2023" @default.
- W4320184480 type Work @default.
- W4320184480 citedByCount "0" @default.
- W4320184480 crossrefType "journal-article" @default.
- W4320184480 hasAuthorship W4320184480A5025942477 @default.
- W4320184480 hasAuthorship W4320184480A5031604355 @default.
- W4320184480 hasAuthorship W4320184480A5047417610 @default.
- W4320184480 hasAuthorship W4320184480A5085790806 @default.
- W4320184480 hasConcept C108583219 @default.
- W4320184480 hasConcept C11413529 @default.
- W4320184480 hasConcept C115961682 @default.
- W4320184480 hasConcept C119857082 @default.
- W4320184480 hasConcept C120665830 @default.
- W4320184480 hasConcept C121332964 @default.
- W4320184480 hasConcept C127413603 @default.
- W4320184480 hasConcept C154945302 @default.
- W4320184480 hasConcept C180205008 @default.
- W4320184480 hasConcept C18762648 @default.
- W4320184480 hasConcept C201995342 @default.
- W4320184480 hasConcept C202444582 @default.
- W4320184480 hasConcept C2780451532 @default.
- W4320184480 hasConcept C33923547 @default.
- W4320184480 hasConcept C41008148 @default.
- W4320184480 hasConcept C50644808 @default.
- W4320184480 hasConcept C62520636 @default.
- W4320184480 hasConcept C81363708 @default.
- W4320184480 hasConcept C83581075 @default.
- W4320184480 hasConcept C9652623 @default.
- W4320184480 hasConcept C97355855 @default.
- W4320184480 hasConcept C99498987 @default.
- W4320184480 hasConceptScore W4320184480C108583219 @default.
- W4320184480 hasConceptScore W4320184480C11413529 @default.
- W4320184480 hasConceptScore W4320184480C115961682 @default.
- W4320184480 hasConceptScore W4320184480C119857082 @default.
- W4320184480 hasConceptScore W4320184480C120665830 @default.
- W4320184480 hasConceptScore W4320184480C121332964 @default.
- W4320184480 hasConceptScore W4320184480C127413603 @default.
- W4320184480 hasConceptScore W4320184480C154945302 @default.
- W4320184480 hasConceptScore W4320184480C180205008 @default.
- W4320184480 hasConceptScore W4320184480C18762648 @default.
- W4320184480 hasConceptScore W4320184480C201995342 @default.
- W4320184480 hasConceptScore W4320184480C202444582 @default.
- W4320184480 hasConceptScore W4320184480C2780451532 @default.
- W4320184480 hasConceptScore W4320184480C33923547 @default.
- W4320184480 hasConceptScore W4320184480C41008148 @default.
- W4320184480 hasConceptScore W4320184480C50644808 @default.
- W4320184480 hasConceptScore W4320184480C62520636 @default.
- W4320184480 hasConceptScore W4320184480C81363708 @default.
- W4320184480 hasConceptScore W4320184480C83581075 @default.
- W4320184480 hasConceptScore W4320184480C9652623 @default.
- W4320184480 hasConceptScore W4320184480C97355855 @default.
- W4320184480 hasConceptScore W4320184480C99498987 @default.
- W4320184480 hasIssue "6" @default.
- W4320184480 hasLocation W43201844801 @default.
- W4320184480 hasOpenAccess W4320184480 @default.
- W4320184480 hasPrimaryLocation W43201844801 @default.
- W4320184480 hasRelatedWork W2337926734 @default.
- W4320184480 hasRelatedWork W2799614062 @default.
- W4320184480 hasRelatedWork W2963958939 @default.
- W4320184480 hasRelatedWork W3021430260 @default.
- W4320184480 hasRelatedWork W3136076031 @default.
- W4320184480 hasRelatedWork W3173182854 @default.
- W4320184480 hasRelatedWork W4311257506 @default.
- W4320184480 hasRelatedWork W4312831135 @default.
- W4320184480 hasRelatedWork W4319994054 @default.
- W4320184480 hasRelatedWork W4320802194 @default.
- W4320184480 hasVolume "265" @default.
- W4320184480 isParatext "false" @default.
- W4320184480 isRetracted "false" @default.
- W4320184480 workType "article" @default.