Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320199804> ?p ?o ?g. }
- W4320199804 endingPage "104591" @default.
- W4320199804 startingPage "104591" @default.
- W4320199804 abstract "In this paper, we propose a bimodal method based on feature fusion in the neural network, including the endoscopic ultrasonography images and clinical data, for segmentation of solid pancreatic tumors in endoscopic ultrasonography images, and classification of three types of solid pancreatic tumors: pancreatic ductal adenocarcinoma (PDAC), neuroendocrine tumor (pNEN) and solid pseudopapillary tumor (SPN). The database of this study involves 107 cases with 12,809 images. We use Attention U-Net as the backbone with feature fusion layer for segmentation, and a backbone of ResNet50 network with feature fusion layer for classification. The overall dice score, mIOU (segmentation) precision, recall and mIOU (detection) of our best bimodal segmentation model are 0.7552, 0.6241, 0.7204, 0.8003 and 0.6033. The sensitivity, specificity and F1 score of our best bimodal classification model are 0.9903, 1.0000, 0.9951 for PDAC, 0.8348, 0.9470 and 0.8404 for pNEN, 0.8484, 0.9444, 0.8328 for SPN, and an overall accuracy of 0.9180. We also use an interpretation model to analyze the important features that influence the final classification results, and show that clinical data like Carbohydrate antigen 199, Carbohydrate antigen 125, has great influence on the classification of PDAC and pNEN, while SPN depends more on endoscopic ultrasonography image features. Using artificial intelligence to automatically segment solid pancreatic tumors can help medical workers judge their scope and boundaries, and improve the detection rate and efficiency, and the proposed methods for classifying pancreatic masses into 3-class can facilitate physicians to master the clinical and image morphological features of these three pancreatic solid tumors." @default.
- W4320199804 created "2023-02-13" @default.
- W4320199804 creator A5009153448 @default.
- W4320199804 creator A5011396105 @default.
- W4320199804 creator A5024155791 @default.
- W4320199804 creator A5030103251 @default.
- W4320199804 creator A5035234248 @default.
- W4320199804 creator A5047451275 @default.
- W4320199804 date "2023-05-01" @default.
- W4320199804 modified "2023-10-03" @default.
- W4320199804 title "Bimodal segmentation and classification of endoscopic ultrasonography images for solid pancreatic tumor" @default.
- W4320199804 cites W1969449580 @default.
- W4320199804 cites W2021229286 @default.
- W4320199804 cites W2046170382 @default.
- W4320199804 cites W2055276888 @default.
- W4320199804 cites W2064027311 @default.
- W4320199804 cites W2064271959 @default.
- W4320199804 cites W2106960759 @default.
- W4320199804 cites W2109056488 @default.
- W4320199804 cites W2130858403 @default.
- W4320199804 cites W2138022371 @default.
- W4320199804 cites W2163459778 @default.
- W4320199804 cites W2301226317 @default.
- W4320199804 cites W2343271637 @default.
- W4320199804 cites W2410775444 @default.
- W4320199804 cites W2587340352 @default.
- W4320199804 cites W2751069891 @default.
- W4320199804 cites W2781525129 @default.
- W4320199804 cites W2884436604 @default.
- W4320199804 cites W2888866000 @default.
- W4320199804 cites W2945807221 @default.
- W4320199804 cites W2963881378 @default.
- W4320199804 cites W2969542839 @default.
- W4320199804 cites W2973140425 @default.
- W4320199804 cites W2973153606 @default.
- W4320199804 cites W2990263762 @default.
- W4320199804 cites W2990396600 @default.
- W4320199804 cites W3010552214 @default.
- W4320199804 cites W3023640369 @default.
- W4320199804 cites W3028511887 @default.
- W4320199804 cites W3038050214 @default.
- W4320199804 cites W3080854721 @default.
- W4320199804 cites W3092422480 @default.
- W4320199804 cites W3139481901 @default.
- W4320199804 cites W4206740751 @default.
- W4320199804 doi "https://doi.org/10.1016/j.bspc.2023.104591" @default.
- W4320199804 hasPublicationYear "2023" @default.
- W4320199804 type Work @default.
- W4320199804 citedByCount "1" @default.
- W4320199804 countsByYear W43201998042023 @default.
- W4320199804 crossrefType "journal-article" @default.
- W4320199804 hasAuthorship W4320199804A5009153448 @default.
- W4320199804 hasAuthorship W4320199804A5011396105 @default.
- W4320199804 hasAuthorship W4320199804A5024155791 @default.
- W4320199804 hasAuthorship W4320199804A5030103251 @default.
- W4320199804 hasAuthorship W4320199804A5035234248 @default.
- W4320199804 hasAuthorship W4320199804A5047451275 @default.
- W4320199804 hasConcept C115961682 @default.
- W4320199804 hasConcept C121608353 @default.
- W4320199804 hasConcept C126322002 @default.
- W4320199804 hasConcept C138885662 @default.
- W4320199804 hasConcept C153180895 @default.
- W4320199804 hasConcept C154945302 @default.
- W4320199804 hasConcept C2776401178 @default.
- W4320199804 hasConcept C2779066768 @default.
- W4320199804 hasConcept C2780210213 @default.
- W4320199804 hasConcept C41008148 @default.
- W4320199804 hasConcept C41895202 @default.
- W4320199804 hasConcept C71924100 @default.
- W4320199804 hasConcept C75294576 @default.
- W4320199804 hasConcept C89600930 @default.
- W4320199804 hasConceptScore W4320199804C115961682 @default.
- W4320199804 hasConceptScore W4320199804C121608353 @default.
- W4320199804 hasConceptScore W4320199804C126322002 @default.
- W4320199804 hasConceptScore W4320199804C138885662 @default.
- W4320199804 hasConceptScore W4320199804C153180895 @default.
- W4320199804 hasConceptScore W4320199804C154945302 @default.
- W4320199804 hasConceptScore W4320199804C2776401178 @default.
- W4320199804 hasConceptScore W4320199804C2779066768 @default.
- W4320199804 hasConceptScore W4320199804C2780210213 @default.
- W4320199804 hasConceptScore W4320199804C41008148 @default.
- W4320199804 hasConceptScore W4320199804C41895202 @default.
- W4320199804 hasConceptScore W4320199804C71924100 @default.
- W4320199804 hasConceptScore W4320199804C75294576 @default.
- W4320199804 hasConceptScore W4320199804C89600930 @default.
- W4320199804 hasLocation W43201998041 @default.
- W4320199804 hasOpenAccess W4320199804 @default.
- W4320199804 hasPrimaryLocation W43201998041 @default.
- W4320199804 hasRelatedWork W133358225 @default.
- W4320199804 hasRelatedWork W1577137544 @default.
- W4320199804 hasRelatedWork W2382607599 @default.
- W4320199804 hasRelatedWork W2508908072 @default.
- W4320199804 hasRelatedWork W2509146328 @default.
- W4320199804 hasRelatedWork W2532775738 @default.
- W4320199804 hasRelatedWork W2546942002 @default.
- W4320199804 hasRelatedWork W2742991909 @default.
- W4320199804 hasRelatedWork W2970216048 @default.
- W4320199804 hasRelatedWork W2996038082 @default.