Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320199809> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4320199809 endingPage "104583" @default.
- W4320199809 startingPage "104583" @default.
- W4320199809 abstract "Pancreatic tumor segmentation is a difficult task due to the high variable shape, small size and hidden position of organs in patients for adaptive radiation therapy plan. To address the problems of limited labeled data, intra-class inconsistency and inter-class indistinction in pancreas tumor segmentation, a transferred DenseSE-Mask R-CNN (TDSMask R-CNN) Network segmentation model using Dense and SE block embedded is proposed in this paper. The multi-scale features strategy is selected to deal with high variability of pancreas and their tumor. The proposed network can learn complementary information from different modes (PET/MR) images respectively by the attention mechanism to get pancreatic tumor regions in different domain. As a result, the irrelevant information for segmenting the tumor area can be suppressed and get low false positives. Furthermore, accurate tumor location from PET image is transferred MRI training model for guide Dense-SE network learning to alleviate the small label samples and reduce network overfitting. Experimental results show that the proposed method achieves average Dice Similarity Coefficient (DSC) of 78.33%, sensitivity (SEN) of 78.56%, and specificity (SPE) of 99.72% on the collected PET/MR data set, which is superior to the existing method of some literatures. This algorithm can improve the accuracy of pancreatic tumor segmentation." @default.
- W4320199809 created "2023-02-13" @default.
- W4320199809 creator A5017247607 @default.
- W4320199809 creator A5019650093 @default.
- W4320199809 creator A5024554185 @default.
- W4320199809 creator A5045197865 @default.
- W4320199809 creator A5049776440 @default.
- W4320199809 creator A5087330907 @default.
- W4320199809 date "2023-05-01" @default.
- W4320199809 modified "2023-10-16" @default.
- W4320199809 title "Auto-segmentation of pancreatic tumor in multi-modal image using transferred DSMask R-CNN network" @default.
- W4320199809 cites W2121486165 @default.
- W4320199809 cites W2143967388 @default.
- W4320199809 cites W2289612910 @default.
- W4320199809 cites W2475225386 @default.
- W4320199809 cites W2615677269 @default.
- W4320199809 cites W2763355946 @default.
- W4320199809 cites W2767704872 @default.
- W4320199809 cites W2806070179 @default.
- W4320199809 cites W2810950922 @default.
- W4320199809 cites W2884707216 @default.
- W4320199809 cites W2889258473 @default.
- W4320199809 cites W2895292895 @default.
- W4320199809 cites W2905101266 @default.
- W4320199809 cites W2908875379 @default.
- W4320199809 cites W2938284053 @default.
- W4320199809 cites W2941574308 @default.
- W4320199809 cites W2972926541 @default.
- W4320199809 cites W2979744002 @default.
- W4320199809 cites W2999234558 @default.
- W4320199809 cites W3002943723 @default.
- W4320199809 cites W3005060603 @default.
- W4320199809 cites W3007570610 @default.
- W4320199809 cites W3016207021 @default.
- W4320199809 cites W3021538281 @default.
- W4320199809 cites W3128646645 @default.
- W4320199809 cites W3192716646 @default.
- W4320199809 cites W3203494913 @default.
- W4320199809 cites W3211861449 @default.
- W4320199809 cites W4210976084 @default.
- W4320199809 doi "https://doi.org/10.1016/j.bspc.2023.104583" @default.
- W4320199809 hasPublicationYear "2023" @default.
- W4320199809 type Work @default.
- W4320199809 citedByCount "5" @default.
- W4320199809 countsByYear W43201998092023 @default.
- W4320199809 crossrefType "journal-article" @default.
- W4320199809 hasAuthorship W4320199809A5017247607 @default.
- W4320199809 hasAuthorship W4320199809A5019650093 @default.
- W4320199809 hasAuthorship W4320199809A5024554185 @default.
- W4320199809 hasAuthorship W4320199809A5045197865 @default.
- W4320199809 hasAuthorship W4320199809A5049776440 @default.
- W4320199809 hasAuthorship W4320199809A5087330907 @default.
- W4320199809 hasConcept C153180895 @default.
- W4320199809 hasConcept C154945302 @default.
- W4320199809 hasConcept C22019652 @default.
- W4320199809 hasConcept C41008148 @default.
- W4320199809 hasConcept C50644808 @default.
- W4320199809 hasConcept C89600930 @default.
- W4320199809 hasConceptScore W4320199809C153180895 @default.
- W4320199809 hasConceptScore W4320199809C154945302 @default.
- W4320199809 hasConceptScore W4320199809C22019652 @default.
- W4320199809 hasConceptScore W4320199809C41008148 @default.
- W4320199809 hasConceptScore W4320199809C50644808 @default.
- W4320199809 hasConceptScore W4320199809C89600930 @default.
- W4320199809 hasLocation W43201998091 @default.
- W4320199809 hasOpenAccess W4320199809 @default.
- W4320199809 hasPrimaryLocation W43201998091 @default.
- W4320199809 hasRelatedWork W2066981076 @default.
- W4320199809 hasRelatedWork W2384093694 @default.
- W4320199809 hasRelatedWork W2510758617 @default.
- W4320199809 hasRelatedWork W2767651786 @default.
- W4320199809 hasRelatedWork W2897195263 @default.
- W4320199809 hasRelatedWork W2944843851 @default.
- W4320199809 hasRelatedWork W2979336375 @default.
- W4320199809 hasRelatedWork W3206592002 @default.
- W4320199809 hasRelatedWork W4206076898 @default.
- W4320199809 hasRelatedWork W4225691219 @default.
- W4320199809 hasVolume "83" @default.
- W4320199809 isParatext "false" @default.
- W4320199809 isRetracted "false" @default.
- W4320199809 workType "article" @default.