Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320341133> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4320341133 endingPage "103099" @default.
- W4320341133 startingPage "103099" @default.
- W4320341133 abstract "Existing studies on deep learning-based physical layer identification have mainly exploited raw in-phase/ quadrature (IQ) samples or power spectral density (PSD) samples as inputs independently. The raw IQ and PSD samples represent the information in the time and frequency domains, respectively. It has been observed from the results of existing studies that identification using raw IQ samples outperforms that using PSD in low signal-to-noise ratio (SNR) regimes, and that identification using PSD outperforms that using raw IQ in high SNR regimes. In this paper, we propose to use the fusion of raw IQ and PSD samples to enhance deep learning-based physical layer identification. In particular, we design three general fusion frameworks, i.e., input, feature, and decision fusions, and integrate them with three typical deep neural network architectures of fully connected neural network, convolutional neural network, and recurrent neural network to form fusion identification schemes. We conduct experiments using 50 off-the-shelf Wi-Fi devices to validate the concerned fusion schemes and investigate their performance gains in identification and model training. Our experimental results verify that the proposed fusion identification schemes can achieve comparable or superior identification performances to the state-of-the-art schemes in the entire SNR regime. Moreover, for the considered fusion schemes, we further investigate the impacts of fusion strategies, deep-learning networks, and SNR conditions on the identification performance and training time." @default.
- W4320341133 created "2023-02-13" @default.
- W4320341133 creator A5018937387 @default.
- W4320341133 creator A5040337456 @default.
- W4320341133 creator A5049999504 @default.
- W4320341133 creator A5062153630 @default.
- W4320341133 creator A5070046055 @default.
- W4320341133 creator A5086036308 @default.
- W4320341133 date "2023-04-01" @default.
- W4320341133 modified "2023-09-24" @default.
- W4320341133 title "Time–frequency fusion for enhancement of deep learning-based physical layer identification" @default.
- W4320341133 cites W1880843531 @default.
- W4320341133 cites W2005422315 @default.
- W4320341133 cites W2009973015 @default.
- W4320341133 cites W2081863860 @default.
- W4320341133 cites W2133297572 @default.
- W4320341133 cites W2169691387 @default.
- W4320341133 cites W2170505850 @default.
- W4320341133 cites W2222577885 @default.
- W4320341133 cites W2791256362 @default.
- W4320341133 cites W2883780447 @default.
- W4320341133 cites W2889741439 @default.
- W4320341133 cites W2895967125 @default.
- W4320341133 cites W2929496932 @default.
- W4320341133 cites W2938144699 @default.
- W4320341133 cites W2952722236 @default.
- W4320341133 cites W2962970834 @default.
- W4320341133 cites W2963580435 @default.
- W4320341133 cites W2980594903 @default.
- W4320341133 cites W2981392034 @default.
- W4320341133 cites W2981735416 @default.
- W4320341133 cites W2998948997 @default.
- W4320341133 cites W3000492549 @default.
- W4320341133 cites W3009816315 @default.
- W4320341133 cites W3015448029 @default.
- W4320341133 cites W3108962068 @default.
- W4320341133 cites W3135870496 @default.
- W4320341133 cites W3168560243 @default.
- W4320341133 cites W3172135703 @default.
- W4320341133 cites W3172553205 @default.
- W4320341133 cites W3217401178 @default.
- W4320341133 doi "https://doi.org/10.1016/j.adhoc.2023.103099" @default.
- W4320341133 hasPublicationYear "2023" @default.
- W4320341133 type Work @default.
- W4320341133 citedByCount "0" @default.
- W4320341133 crossrefType "journal-article" @default.
- W4320341133 hasAuthorship W4320341133A5018937387 @default.
- W4320341133 hasAuthorship W4320341133A5040337456 @default.
- W4320341133 hasAuthorship W4320341133A5049999504 @default.
- W4320341133 hasAuthorship W4320341133A5062153630 @default.
- W4320341133 hasAuthorship W4320341133A5070046055 @default.
- W4320341133 hasAuthorship W4320341133A5086036308 @default.
- W4320341133 hasConcept C108583219 @default.
- W4320341133 hasConcept C116834253 @default.
- W4320341133 hasConcept C119857082 @default.
- W4320341133 hasConcept C138885662 @default.
- W4320341133 hasConcept C153180895 @default.
- W4320341133 hasConcept C154945302 @default.
- W4320341133 hasConcept C158525013 @default.
- W4320341133 hasConcept C41008148 @default.
- W4320341133 hasConcept C41895202 @default.
- W4320341133 hasConcept C50644808 @default.
- W4320341133 hasConcept C59822182 @default.
- W4320341133 hasConcept C81363708 @default.
- W4320341133 hasConcept C86803240 @default.
- W4320341133 hasConceptScore W4320341133C108583219 @default.
- W4320341133 hasConceptScore W4320341133C116834253 @default.
- W4320341133 hasConceptScore W4320341133C119857082 @default.
- W4320341133 hasConceptScore W4320341133C138885662 @default.
- W4320341133 hasConceptScore W4320341133C153180895 @default.
- W4320341133 hasConceptScore W4320341133C154945302 @default.
- W4320341133 hasConceptScore W4320341133C158525013 @default.
- W4320341133 hasConceptScore W4320341133C41008148 @default.
- W4320341133 hasConceptScore W4320341133C41895202 @default.
- W4320341133 hasConceptScore W4320341133C50644808 @default.
- W4320341133 hasConceptScore W4320341133C59822182 @default.
- W4320341133 hasConceptScore W4320341133C81363708 @default.
- W4320341133 hasConceptScore W4320341133C86803240 @default.
- W4320341133 hasLocation W43203411331 @default.
- W4320341133 hasOpenAccess W4320341133 @default.
- W4320341133 hasPrimaryLocation W43203411331 @default.
- W4320341133 hasRelatedWork W2337926734 @default.
- W4320341133 hasRelatedWork W2732542196 @default.
- W4320341133 hasRelatedWork W2738221750 @default.
- W4320341133 hasRelatedWork W3156786002 @default.
- W4320341133 hasRelatedWork W4311257506 @default.
- W4320341133 hasRelatedWork W4312417841 @default.
- W4320341133 hasRelatedWork W4320802194 @default.
- W4320341133 hasRelatedWork W4321369474 @default.
- W4320341133 hasRelatedWork W4366224123 @default.
- W4320341133 hasRelatedWork W564581980 @default.
- W4320341133 hasVolume "142" @default.
- W4320341133 isParatext "false" @default.
- W4320341133 isRetracted "false" @default.
- W4320341133 workType "article" @default.